Electrical and Rheological Behaviors of VGCF/Polyphenylene Sulfide Composites

기상성장 탄소섬유/폴리페닐렌설파이드 복합체 제조 및 전기적$\cdot$유변학적 거동

  • Noh, Han-Na (Department of Materials Science, Korea University) ;
  • Yoon, Ho-Gyu (Department of Materials Science, Korea University) ;
  • Kim, Jun-Kyung (Polymer Hybrid Research Center, Korea Institute of Science and Technology) ;
  • Lee, Hyun-Jung (Polymer Hybrid Research Center, Korea Institute of Science and Technology) ;
  • Park, Min (Polymer Hybrid Research Center, Korea Institute of Science and Technology)
  • 노한나 (고려대학교 재료공학과) ;
  • 윤호규 (고려대학교 재료공학과) ;
  • 김준경 (한국과학기술연구원 고분자 하이브리드 센터) ;
  • 이현정 (한국과학기술연구원 고분자 하이브리드 센터) ;
  • 박민 (한국과학기술연구원 고분자 하이브리드 센터)
  • Published : 2006.01.01

Abstract

The effect of vapor grown carbon fiber (VGCF) contents on electrical and rheological properties of VGCF filled polyphenylene sulfide (PPS) composites prepared through melt mixing using a twin screw exruder was studied. This method was proved to be quite effective to produce good dispersion of VGCF in the matrix even for highly filled PPS. From the dependence of the electrical conductivity on VGCF content, the percolation phenomena began to occur above $10\;wt\%$. While there is only a marginal increase of viscosity for 1 and $5\;wt\%$ VGCF filled PPS, the composites containing $10\;wt\%$. While VGCF showed abrupt increase in viscosity as well as flattening of frequency vs modulus curve, indicating a transition from a liquid-like to a solid-like behavior due to the creation of VGCF network. This result agrees well to the fact that the network formation in the composite can be composite by rheological property dependence on filler content as well as by electrical conductivity measurement.

이축압출기를 이용한 용융혼련으로 제조한 기상성장 탄소섬유(Vapor Grown Carbon Fiber, VGCF) 충전 폴리페닐렌설파이드(polyphenylene sulfide, PPS) 복합체외 VGCF 함량에 따른 전기적, 유변학적 특성을 살펴보았다. 복합체의 파단면 모폴로지 관찰결과, 본 방법은 PPS 매트릭스 내에 VGCF를 균일하게 분산시키는데 있어서 효과적임을 확인할 수 있었다. $5\;wt\%$, VGCF 혼입까지는 미충전 PPS와 거의 유사한 전기적 성질과 유변학적 거동을 보였으며 $10\;wt\%$로 VGCF의 혼입양을 증가시켰을 때 현저한 도전성 발현 및 점도 상승, 탄성률의 주파수 무의존성 등 유변학절 성질의 변동이 관찰되었다. 고충전 PPS계에서의 탄성률의 주파수 무의존성은 복합체 내에서의 VGCF의 네트워크 형성으로 인한 건으로 추정되며, 이는 전기적 성질뿐만 아니라 유변학적 성질의 측정결과로부터 복합체 내의 도전성 네트워크의 형성을 확인할 수 있음을 보여준다.

Keywords

References

  1. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science, 297, 787 (2002) https://doi.org/10.1126/science.1060928
  2. H. Shinohara, Recent Advances in the Research and Development of Nanocarbon Materials, CMC, Tokyo, 2003
  3. P. J. F. Harris, Int. Mat. Rev., 49, 31 (2004); E. T. Thostenson, C. Li, and T. Chou, Compos. Sci. Technol., 65, 491 (2005) https://doi.org/10.1016/j.compscitech.2004.11.003
  4. E. V. Barrera, J.Mineral, Metals and Mat. Soc., 52, 38 (2000)
  5. P. Potschke, T. D. Fornes, and D. R. Paul, Polymer, 43, 3247 (2002) https://doi.org/10.1016/S0032-3861(02)00151-9
  6. S. A. Gordeyev, F. J. Macedo, J. A. Ferreira, F. W. J. V. Hattum, a nd C. A. Bernardo, Physica B, 279, 33 (2000) https://doi.org/10.1016/S0921-4526(99)00660-2
  7. T. Takahashi, K. Yonetake, K. Koyama, and T. Kikuchi, Macromol Rapid commun., 24, 763 (2003) https://doi.org/10.1002/marc.200350021
  8. R. J. Kuriger, M. K. Alam, D. P. Anderson, and R. L. Jacobsen, Composites: Part A, 33, 53 (2002) https://doi.org/10.1016/S1359-835X(01)00070-7
  9. J. Sandler, P. Werner, M. S. P. Shaffer, V. Demchuk, V. Altstadt, and A. H. Windle, Composites: Part A, 33, 1033 (2002) https://doi.org/10.1016/S1359-835X(02)00084-2
  10. L.Jin, C. Bower, and O. Zhou, Appl. Phys. Lett., 73, 1197 (1998) https://doi.org/10.1063/1.122125
  11. M. S. P. Shaffer and A. H. Windle, Adv. Meter., 11, 937 (1999) https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9
  12. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, Appl. Phys. Lett., 76, 2868 (2000) https://doi.org/10.1063/1.126500
  13. M. Tosaki, H. Sakai, A. Sasaki, Y. Takahashi, M. Matsubara, and M. Endo, Kobunshi Ronbunshu, 62, 585 (2005) https://doi.org/10.1295/koron.62.585
  14. R. Andrews, D. Jacques, M. Minot, and T. Rantell, Macromol. Mater. Eng., 287, 395 (2002) https://doi.org/10.1002/1439-2054(20020601)287:6<395::AID-MAME395>3.0.CO;2-S
  15. O. S. Carneiro, J. A. Covas, C. A. Bernardo, G. Caldeira, F. W. J. Van Hattum, J. M. Ting, R. L. Alig, and M. L. Lake, Compos. Sci. Technol., 58, 401 (1998) https://doi.org/10.1016/S0266-3538(97)00138-3
  16. F. Mighri, M. A. Huneault, and M. F. Champagne, Polym. Eng. Sci., 44, 1755 (2004) https://doi.org/10.1002/pen.20177
  17. Polymer Physics, The polymer society of Japan, p 15-17 (1998)
  18. Polymer Data Handbook, Oxford University Press, New York, p 719 (1999)
  19. K. Lozano, J. Bonilla-Rios, and E. V. Barrera, J. Appl. Polym. Sci., 80, 1162 (2001) https://doi.org/10.1002/app.1200
  20. M. K. Seo and S. J. Park, Chem. Phys. Lett., 395, 44 (2004) https://doi.org/10.1016/j.cplett.2004.07.047
  21. M. Abdel-Goad and P. Potschke, J. Non-Newtonian Fluid Mech, 128, 2 (2005) https://doi.org/10.1016/j.jnnfm.2005.01.008