Characteristics of Electrospun Poly(methyl methacrylate) Nanofibers Embedding Multi-Walled Carbon Nanotubes(MWNTs)

다중벽 탄소 나노튜브가 분산된 Poly(methyl methacrylate) 고분자 용액의 전기방사연구

  • Kim Dong Ouk (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • Lee Dai-Hoi (Samsung SDI Corporate R&D Center) ;
  • Yoon Seong-sik (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • Lee Sun-Ae (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • Nam Jae Do (Department of Polymer Science and Engineering, Sungkyunkwan University)
  • 김동욱 (성균관대학교 고분자공학과) ;
  • 이대회 (삼성 SDI) ;
  • 윤성식 (성균관대학교 고분자공학과) ;
  • 이선애 (성균관대학교 고분자공학과) ;
  • 남재도 (성균관대학교 고분자공학과)
  • Published : 2006.01.01

Abstract

An electrospinning process was used to fabricate poly(methyl methacrylate) (PMMA) nanofibers embedding multi-walled carbon nanotubes(MWNTs). SEM images showed that the nanofiber surface and structural morphology depended on solvent types (dimethyl formamide, chlor-form and toluene) and carbon nanotube contents (0.5 and $3.0\;wt\%$). Nano-fiber alignments could be controlled by adjusting the electrodes configuration at collector sites. Relationship between carbon nanotube and PMMA nanofiber was studied with radius of gyration of polymer chain and carbon nanotube sizes. As the carbon nanotube content ratio increased, the number of bead increased.

다중벽 탄소 나노튜브(multi-walled carbon nanotubes, MWNTs)를 포함하고 있는 poly(methyl methacrylate)(PMMA) 나노섬유를 전기 방사법에 의해 제작하였다. 주사 전자 현미경을 통하여 용매의 종류(dimethyl formamide, chloroform and toluene)와 탄소 나노튜브의 함량(0.5 and $3.0\;wt\%$)에 의해 나노섬유 표면의 형상과 탄소 나노튜브와 나노섬유의 구조가 영향을 받았다. 집적판의 전극 모양을 조절함으로써 나노섬유의 정렬이 가능하였다. 고분자 사슬의 회전 반경과 탄소 나노튜브의 크기의 비교를 통하여 PMMA 나노섬유와 탄소 나노튜브의 관계를 정리하였다. 탄소 나노튜브 투입량이 증가함에 따라 고분자 비드가 증가하였다.

Keywords

References

  1. A. Formhals, US Patent 1,975,504 (1934)
  2. G. E. Martin, I. D. Cockshott, and J. T. Fields, US Patent 4,044,404 (1977)
  3. S. Iijima, Nature, 354, 56 (1991) https://doi.org/10.1038/354056a0
  4. A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordander, D. T. Cobert, and R. E. Smalley, Science, 269, 1550 (1995) https://doi.org/10.1126/science.269.5230.1550
  5. W. A. de Heer, A. Chatelain, and D. Ugarte, Science, 270, 1179 (1995) https://doi.org/10.1126/science.270.5239.1179
  6. P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, Science, 278, 100 (1997) https://doi.org/10.1126/science.278.5335.100
  7. S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Carroll, J. N. Coleman, A. B. Dalton, A. P. Davey, A. Drury, B. McCarthy, S. Maier, and A. Strevens, Adv. Mater., 10, 1091 (1988) https://doi.org/10.1002/(SICI)1521-4095(199810)10:14<1091::AID-ADMA1091>3.0.CO;2-L
  8. F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, and K. I. Winey, Macromolecules, 37, 9048 (2004) https://doi.org/10.1021/ma049164g
  9. M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, Nano Lett., 3, 269 (2003) https://doi.org/10.1021/nl025924u
  10. S. J. Park, M. S. Cho, S. T. Lim, H. J. Choi, and M. S. Jhon, Macromol. Rapid Commun., 24, 1070 (2003) https://doi.org/10.1002/marc.200300089
  11. K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, and M. Korobov, J. Phys. Chem. B, 104, 8911 (2000) https://doi.org/10.1021/jp002555m
  12. Z. Zhou and D. Yan, Macromol. Theory Simul., 6, 597 (1997) https://doi.org/10.1002/mats.1997.040060302
  13. S. Megelski et al., Macromolecules, 35, 8456 (2002) https://doi.org/10.1021/ma020444a
  14. K. Yamamoto, S. Akita, and Y. Nakayama, Jpn. J. Appl. Phys., 35, L917 (1996) https://doi.org/10.1143/JJAP.35.L917
  15. M. S. Kumar et el., Chem. Phys. Lett., 383, 235 (2004) https://doi.org/10.1016/j.cplett.2003.11.032