Random Amplification of Polymorphic DNA와 혈청학적 분석을 이용한 국내식품에서 분리한 Listeria monocytogenes의 분류

Classification of Listeria monocytogenes Isolates from Korean Domestic Foods Using Random Amplification of Polymorphic DNA and Serotyping Analysis

  • 김현중 (경희대학교 생명자원과학연구소 및 생명과학대학 식품생명공학과) ;
  • 박시홍 (경희대학교 생명자원과학연구소 및 생명과학대학 식품생명공학과) ;
  • 김해영 (경희대학교 생명자원과학연구소 및 생명과학대학 식품생명공학과)
  • Kim Hyun-Joong (Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Park Si-Hong (Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Kim Hae-Yeong (Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University)
  • 발행 : 2006.03.01

초록

본 연구에서는 국내시장에서 유통되는 육류, 냉동식품, 생우유, 조개류 등과 같은 식품으로부터 L. monocytogenes들을 분리하고 혈청형을 결정하였다. RAPD 결과를 통해서 L. monocytogenes는 Listeria 속의 다른 균주들과 전체 밴드의 수와 크기에서 구별이 되었다. 또한, L. monocytogenes는 2개 그룹으로 구별되었으며, 그룹 I은 L. monocytogenes 1/2b, 4e, 4b, 그룹 II는 L. monocytogenes 1/2a, 1/2c, 3 혈청형 그룹별로 분류되었다. 결론적으로 RAPD 방법과 serotyping은 L. monocytogenes를 분류하는 데에 있어서 기존의 방법의 단점을 보완한 새로운 가능성을 제시하였다.

Molecular subtyping of Listeria monocytogenes, including type strains and isolates from Korean foods, were performed using random amplification of polymorphic DNA (RAPD). Each Listeria species showed specific RAPD band patterns, and L. monocytogenes serotypes and isolates were divided into two clusters. RAPD results showed that L. monocytogenes isolates from Korean foods were divided into two groups. Group I contained L. monocytogenes serotypes 1/2b and 4b, whereas Group II contained serotypes 1/2a and 1/2c. These results suggested RAPD as possible subtyping methods for Listeria species. Also, RAPD Results showed significant correlation between molecular subtyping and serotyping of L. monocytogenes, and classified two different groups of L. monocytogenes isolated from Korean foods.

키워드

참고문헌

  1. Allerberger, F. and S. J. Fritschel. 1999. Use of automated ribotyping of Austrian Listeria monocytogenes isolates to support epidemiological typing. J. Microbiol. Meth. 35: 237-244 https://doi.org/10.1016/S0167-7012(99)00025-1
  2. Byun, S. K., S. C. Jung, and H. S. Yoo. 2001. Random amplification of polymorphic DNA typing of Listeria monocytogenes isolated from meat. Int. J. Food Microbiol. 69: 227-235 https://doi.org/10.1016/S0168-1605(01)00504-9
  3. Carroll, S. A., L. E. Carr, E. T. Mallison, C. Lamichanne, B. Rice, D. M. Rollins, and S. W. Joseph. 1999. Development and evaluation of a 24-hour method for the detection and quantification of Listeria monocytogenes in meat product. J. Food Proto 63: 347-353
  4. Guerra, M. M., F. Bernardo, and J. Mclauchlin. 2002. Amplified Fragment length polymorphism (AFLP) analysis of Listeria monocytogenes. System. Appl. Microbiol. 25: 456-461 https://doi.org/10.1078/0723-2020-00133
  5. Malak, M., A. Vivier, P. Andre, J. Decallonne, and P. Gilot. 2001. RAPD analysis, serotyping and esterase typing indicate that the population of Listeria monocytogenes strains recoverd from cheese and from patients with listeriosis in Belgium are different. Can. J. Microbiol. 47: 883-887 https://doi.org/10.1139/cjm-47-9-883
  6. Martinez, J., L. M. Rorvik, V. Brox, J. Lassen, M. Seppola, L. Gram, and B. Fonnesbech-Vogel. 2003. Genetic variability among isolate of Listeria monocytogenes from food products, clinical samples and processing environment, estimated by RAPD typing. Int. J. Food Microbiol. 84: 285-297 https://doi.org/10.1016/S0168-1605(02)00423-3
  7. Mereghetti, L., P. Lanotte, V. N. Savoye-Marczuk, A. Audurier, and R. Quentin. 2002. Combined ribotyping and random multiprimer DNA analysis to probe the population structure of Listeria monocytogenes. Appl. Environ. Microbiol. 68: 2849-2856 https://doi.org/10.1128/AEM.68.6.2849-2857.2002
  8. Nadon, C.A., D. L. Woodward, C. Young, F. G. Rodgers, and M. Wiedmann. 2001. Correlation between molecular subtyping and serotyping of Listeria monocytogenes. J. Clin. Microbiol. 39: 2704-2707 https://doi.org/10.1128/JCM.39.7.2704-2707.2001
  9. Norrung, B. and N. Skovgaard. 1993. Application of multilocus enzyme electrophoresis in studies of the epidemiology of Listeria monocytogenes in Denmark. Appl. Environ. Microbiol. 59: 2817-2822
  10. Paillard, D., V. Dubois, R. Duran, F. Nathier, C. Guittet, P. Caumette, and C. Quentin. 2003. Rapid identification of Listeria species by using restriction fragment length polymorphism of PCR-amplified 23S rRNA gene fragments. Appl. Environ. Microbiol. 69: 6386-6392 https://doi.org/10.1128/AEM.69.11.6386-6392.2003
  11. Rasmussen, O. F., P. Skouboe, L. Dons, L. Rossen, and I.E. Olsen. 1995. Listeria monocytogenes exists in at least three evolutionary lines: evidence from flagellin, invasive associated protein and listeriolysin a genes. Microbiology 141: 2053-2061 https://doi.org/10.1099/13500872-141-9-2053
  12. Smith, M. L. and J. B. Anderson. 1989. Restriction fragment length polymorphism in mitochondrial DNAs of Armillaria. Mycolog. Res. 93: 247-256 https://doi.org/10.1016/S0953-7562(89)80151-0
  13. Tabouret, M., J. D. Rycke, and G. Dubray. 1992. Analysis of surface proteins of Listeria in relation to species, serovar and pathogenicity. J. Gen. Microbiol. 138: 743-753 https://doi.org/10.1099/00221287-138-4-743
  14. Volokhov, D., A. Rasooly, K. Chummakov, and V. Chizhikov. 2002. Identification of Listeria species by Microarray-based assay. J. Clin. Microbiol. 40: 4720-4728 https://doi.org/10.1128/JCM.40.12.4720-4728.2002
  15. Wiedmann, M., J. L. Bruce, C. Keating, A. E. Johnson, P. L. Mcdonough, and C. A. Batt. 1997. Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect. Immun. 65: 2707-2716