Structure of Bacterial Communities in Biological Nitrogen Removal System

Biological Nitrogen Removal System의 세균 군집 분석

  • Kim, Kyung-Mi (Department of Microbiology and the Biotechnology Research Institute, Chungbuk National University) ;
  • Lee, Sang-Ill (Department of Environmental Engineering, Chungbuk National University) ;
  • Lee, Dong-Hun (Department of Microbiology and the Biotechnology Research Institute, Chungbuk National University)
  • 김경미 (충북대학교 미생물학과 및 바이오연구소) ;
  • 이상일 (충북대학교 환경공학과) ;
  • 이동훈 (충북대학교 미생물학과 및 바이오연구소)
  • Published : 2006.03.01

Abstract

To understand the efficient process of biological nitrogen removal (BNR) system, the structure of bacterial communities in nitrification reactors was analyzed using PCR and terminal restriction fragment length poly morphism (I-RFLP) methods. In this study, we used an advanced treatment system with plotting media, Nutrient Removal Laboratory system, or the rumination type sequencing batch reactor (SBR) system. The terminal restriction fragments of ammonia-oxidizing bacteria (AOB) and other $\beta-proteobacteria$ were observed in all of three BNR systems. The nucleotide sequence analysis of terminal restriction fragments showed that Nitrosomonas and Nitrosolobus were major populations of AOB in SBR system, whereas uncultured $\beta-proteobacteria$ and Cardococcus australiensis were the predominant groups in other two BNR systems. Also the SBR system may be more efficient to enrich AOB. These results indicate that the different structure of bacterial community may be developed depending on the wastewater treatment systems, although the same influent is used.

생물학적 질소 제거(Biological nitrogen removal; BNR) 시스템의 효율적인 처리 공정을 이재하기 위하여 질산화 반응조 내 세균 군집 구조를 16S rRNA 유전자의 PCR 및 terminal restriction fragment length polymorphism (T-RELP)방법을 이용하여 분석하였다. 본 연구에서 사용한 BNR 시스템은 국내에서 비교적 많이 적용되고 있는 부상여재를 이용한 고도처리 시스템, Nutrient Removal Laboratory 시스템, 반추기법을 이용한 영양염류 처리 Sequencing Batch Reactor (SBR)시스템이었고, 실험 결과 모든 시료에서 암모니아 산화 세균과 $\beta-proteobacteria$에 해당되는 말단 단편을 확인할 수 있었다. 암모니아 산화세균 군집에서 유래된 말단 단편의 염기서열을 분석한 결과 SBR공정에서는 Nitrosomonas와 Nitrosolobus에 속하는 군집 이 우점종임을 확인할 수 있었다. 그러나 다른 두 공정들에서는 $\beta-proteobacteria$에 속하는 미배양 균주와 Cardococcus australiensis와 염기서열 유사도가 높은 군집이 우점하였다. 또한, 암모니아산화 세균군집을 분석한 결과, SBR 공정이 암모니아 산화세균의 농화 배양에 가장 효과적인 것으로 나타났다. 이러한 결과는 각 BNR 시스템에 동일한 폐수가 유입되었음에도 불구하고 서로 다른 세균 군집 구조를 형성하고 있음을 의미한다.

Keywords

References

  1. Akira, H., I. Mitsuru, and S. Hisashi. 2000. Terminal restriction pattern analysis of 16S rRNA genes for the characterization of bacterial communities of activated sludge. J. Biosci. Bioeng. 90, 148-156 https://doi.org/10.1016/S1389-1723(00)80102-4
  2. Amann, R., W. Ludwig and K.H. Schleifer. 1994. Identification of uncultured bacteria: a challenging task for molecular taxonomists. ASM News 60, 360-365
  3. Bernet, N., O. Sanchez, D. Cesbron, J.-P. Steyer, and J.-P. Delgenes. 2005. Modeling and control of nitrite accumulation in a nitrifying biofilm reactor. Biochem. Engineer. J. 24, 173-183 https://doi.org/10.1016/j.bej.2005.02.002
  4. Calvo, L., X. Vila, C.A. Abella, and L.J. Garcia-Gil. 2004. Use of the ammonia-oxidizing bacterial-specific phylogenetic probe Nso1225 as a primer for fingerprint analysis of ammonia-oxidizer communities. Appl. Microbiol. Biotechnol. 63, 715-721 https://doi.org/10.1007/s00253-003-1433-1
  5. Cole, J.R., B. Chai, R.J. Farris, Q. Wang, S.A. Kulam, D.M. McGarrell, G.M. Garrity, and J.M. Tiedje. 2005. The ribosomal database project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic acids Res. 33, D294-D296 https://doi.org/10.1093/nar/gki038
  6. Dunbar, J., L.O. Ticknor, and C.R. Kuske. 2000. Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl. Environ, Microbiol. 66, 2943-2950 https://doi.org/10.1128/AEM.66.7.2943-2950.2000
  7. Edwards, U., T. Rogall, H. Blocker, M. Emde, and E.C. Botter. 1989. Isolation and direct complete determination of entire genes. Nucleic Acids Res. 17, 7843-7853 https://doi.org/10.1093/nar/17.19.7843
  8. Feray, C. and B. Montuelle. 2003. Chemical and microbial hypotheses explaining the effect of wastewater treatment plant discharges on the nitrifying communities in freshwater sediment. Chemosphere 50, 919-928 https://doi.org/10.1016/S0045-6535(02)00646-X
  9. Kelly, J.J., S. Siripong, J. McCormick, L.R. Janus, H. Urakawa, S.E. Fantroussi, P.A. Noble, L. Sappelsa, B.E. Rittmann, and D.A. Stahl. 2005. DNA microarray detection of nitrifying bacterial 16S rRNA in wastewater treatment plant samples. Water Res. 39, 3229-3238 https://doi.org/10.1016/j.watres.2005.05.044
  10. Kindaichi, T., T. Ito, and S. Okabe. 2004. Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography- fluorescence in situ hybridization. Appl. Environ. Microbiol. 70, 1641-1650 https://doi.org/10.1128/AEM.70.3.1641-1650.2004
  11. Konuma, S., H. Satoh, T. Mino, and T. Matsuo. 2001. Comparison of enumeration methods for ammonia-oxidizing bacteria. Water Sci. Technol. 43, 107-114
  12. Lee, S.H., C. Malone, and P.F. Kemp. 1993. Use of multiple 16S rRNA-targeted fluorescent probes to increase signal strength and measure cellular RNA from natural planktonic bacteria. Mar. Ecol.Prog. Ser. 101, 193-201 https://doi.org/10.3354/meps101193
  13. Liu, W.T., T.L. Marsh, H. Cheng, and L.J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63, 4516-4522
  14. Liu, Y., T. Zhang, and H.H.P. Fang. 2005. Microbial community analysis and performance of a phosphate-removing activated sludge. Bioresour Technol. 96, 1205-1214 https://doi.org/10.1016/j.biortech.2004.11.003
  15. Marsh, T.L., P. Saxman, J. Cole, and J. Tiedje. 2000. Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis. Appl.Environ. Microbiol. 66, 3616-3620 https://doi.org/10.1128/AEM.66.8.3616-3620.2000
  16. Maszenan, A.M., R.J. Seviour, B.K.C. Patel, and P. Schumann. 2002. Quadricoccus australiensis gen. nov., sp. nov., $\alpha$.,$\beta$‚-proteobacterium from activated sludge biomass. Int. J. Syst. Evol. Microbiol. 52, 223-228 https://doi.org/10.1099/00207713-52-1-223
  17. Miller, D.N., J.E. Bryant, E.L. Madsen, and W.C. Ghiorse. 1999. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65, 4715-4724
  18. Moeseneder, M.M., J.M. Arrieta, G. Muyzer, C. Winter, and G.J. Herndl. 1999. Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 65, 3518-3525
  19. Purkhold, U., A. Pommerening-Roser, S. Juretschko, M.C. Schmid, H.-P. Koops, and M. Wagner. 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl. Environ. Microbiol. 66, 5368-5382 https://doi.org/10.1128/AEM.66.12.5368-5382.2000
  20. Regan, J.M., G.W. Harrington, and D.R. Noguera. 2002. Ammonia- and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system. Appl. Environ.Microbiol. 68, 73-81 https://doi.org/10.1128/AEM.68.1.73-81.2002
  21. Sneath, P.H. A. and R.R. Sokal. 1973. Numerical taxonomy. The principles and practice of numerical classification. W. H. Freeman, San Francisco
  22. Tsuneda, S., T. Nagano, T. Hoshino, Y. Ejiri, N. Noda, and A. Hirata. 2003. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor. Water Res. 37, 4965-4973 https://doi.org/10.1016/j.watres.2003.08.017
  23. Vaisanen, R.K., M.S. Roberts, J.L. Garland, S.D. Frey, and L.A. Dawson. 2005. Physiological and molecular characterisation of microbial communities associated with different water-stable aggregate size classes. Soil Biol. Biochem. 37, 2007-2016 https://doi.org/10.1016/j.soilbio.2005.02.037
  24. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407-4414 https://doi.org/10.1093/nar/23.21.4407