Improved Equalization Technique of OFDM Systems Using Block Type Pilot Arrangement

Block Type 파일럿 배치를 적용한 OFDM 시스템의 등화 기법 개선

  • 김환우 (충남대학교 정보통신공학부) ;
  • 김지헌 (국방과학연구소 기술연구본부)
  • Published : 2006.04.01

Abstract

This paper is concerned with a equalization technique for Orthogonal Frequency Division Multiplexing (OFDM) systems based on a block type pilot arrangement over slow fading channels. The bit rates obtained in underwater channels are relatively modest compared to some other communication channels such as cellular phones or indoor wireless systems. Consequently. the Doppler effect is the important parameter in tracking a channel. In case of a coherent demodulation scheme, the residual mean phase errors due to Doppler frequency may be fatal for the performance of the system. The equalizer could not solely handle mean Doppler shift. To account for the common Doppler effect a phase error tracking loop is used with the frequency equalizer. so that the rotation errors are avoided. Furthermore. simulations show that we can reduce the computational load of the tracking loop with negligible effect on performance.

본 논문은 slow 페이딩 채널에서 block type 파일럿 배치에 기반한 OFDM (Orthogonal Frequency Division Multiplexing) 시스템의 등화 기법을 다루고 있다. 수중 채널에서 얻을 수 있는 비트 속도는 셀룰러 폰이나 실내 무선 시스템과 같은 여타 통신 채널에 비해 상대적으로 낮은 편이며, 따라서 채널 추적시 도플러 효과가 중요한 파라미터가 된다. Coherent 복조 방식의 경우 도플러 주파수에 의한 잔여 평균위상에러는 시스템 성능에 치명적으로 작용할 수 있으며, 등화기만으로는 평균 도플러 쉬프트 효과에 대처하지 못할 수 있다. 공통 도플러 효과에 대처하기 위해 주파수 등화기와 더불어 위상에러 추적회로를 사용하여 회전 에러를 배제할 수 있다. 아울러 성능 저하를 최소화하는 수준에서 추적회로의 연산 부담을 줄일 수 있음을 시뮬레이션을 통해 증명하였다.

Keywords

References

  1. R. V. Nee and R E. Prasad. OFDM for Wireless Multimedia Communications. (Artech House. 2000)
  2. Pittman, G. T, Simulation of an Orthogonal Frequency Division Multiplexing Based Underwater Communication System,(Using a Physics Based Model for the Underwater Acoustic Sound Channel, ADA397494, Naval Postgraduate School, September 2001)
  3. P. Karlsson and M. Petren, Coding and Signal Processing of an Underwater Acoustic Communication System, (FOI-R-0234-SE, Swedish Defence Research Agency, October 2001)
  4. S. Coatelan and A. Glavieux, 'Design and test of a coding OFDM system on the shallow water acoustic channel,' OCEANS '95. MTS/IEEE Challenges of Our Changing Global Environment Conference Proceedings, 3, 2065-2070, 9-12 October 1995
  5. W.K.Lam and R.F.Ormondroyd, 'A Coherent COFDM Modulation System for a Time-Varying Frequency-Selective Underwater Acoustic Channel,' 7th International Conference on Technology Transfer from Research to Industry, 198-203, 23-25 June,1997
  6. D. D. Falconer, 'Jointly Adaptive Equalization and Carrier Recovery in Two-Dimensional Digital Communication Systems,' The BELL System Technical Journal, 55(3) 317-334, March 1976 https://doi.org/10.1002/j.1538-7305.1976.tb03317.x
  7. V.S.Abhayawardhana and I.JWassell, 'Residual frequency offset correction for coherently modulated OFDM systems in wireless communication: IEEE VTC Spring 2002, 2 777-781, May 2002
  8. A.G.Armada, 'Understanding the Effects of Phase Noise in Orthogonal Frequency Division Multiplex (OFDM): IEEE Trans. on Broadcasting,47, 153-159, June 2001 https://doi.org/10.1109/11.948268
  9. J.Rinne and M.Renfors, 'Equalization of Orthogonal Frequency Division Multiplexing Signals: IEEE GLOBECOM 94(1) 415-419,28. November-2. December 1994
  10. S. K. Wilson, R. E. Khayata, and J. M. Cioff, '16 QAM modulation with orthogonal frequency division multiplexing in a Rayleigh-fading environment: IEEE 44th Vehicular Technology Conference,3 1660-1664, 8-10 June 1994
  11. S.Coleri, M.Ergen, A.Puri, and A.Bahai, 'Channel Estiamtion Techniques Based on Pilot Arrangement in OFDM Systems: IEEE Trans. on Broadcasting,48(3) 223-229, Sep. 2002 https://doi.org/10.1109/TBC.2002.804034