Study on Performance of Water Vapor-Permeation Through Hydrophilic Polymer Membranes

친수성 고분자 막을 이용한 수증기 투과 성능에 관한 연구

  • Rhim Ji-Won (Department of Chemical Engineering, Hannam University) ;
  • Yun Tae-Il (Department of Chemical Engineering, Hannam University) ;
  • Seo Moo-Young (Department of Chemical Engineering, Hannam University) ;
  • Cho Hyun-Il (Department of Chemical Engineering, Hannam University) ;
  • Ha Seong-Yong (AIRRANE Co., Ltd.)
  • 임지원 (한남대학교 공과대학 화학공학과) ;
  • 윤태일 (한남대학교 공과대학 화학공학과) ;
  • 서무영 (한남대학교 공과대학 화학공학과) ;
  • 조현일 (한남대학교 공과대학 화학공학과) ;
  • 하성용 ((주)에어레인)
  • Published : 2006.06.01

Abstract

In this study the membrane preparation and water vapor permeation of the hydrophilic polymer materials, polyaminosiloxane and polyhydroxylsiloxane, used as the coating materials for the preparation of asymmetric flat and hollow fiber membranes were investigated. And the water vapor permeation towards air permeation and their permselectivity were intensively studied for the resulting Resin A/Resin C (coupling agent) and Resin B/Resin C membranes. The water vapor permeability for 3 wt% Resin C introduced into Resin A (Resin A/Resin C) membrane was higher than for 1 and 5 wt% membranes and also water vapor permeability increased with increasing operating temperatures. In addition, at this content of 3 wt% Resin C, the absorption capability became maximum through dynamic equilibrium absorption experiment. Water vapor permeability, 43578 Barrer (1 Barrer = $10^{-10}cm^3(STP){\cdot}cm/cm^2{\cdot}s{\cdot}cmHg$) and 53000 Barrer, and the selectivity of $P(H_2O)P(Air)$, 101.3 and 102.6 were shown at 25 and $35^{\circ}C$, respectively.

본 연구에서는 중공사 및 평막 형태의 비대칭성 막 제조에 있어서 코팅 재료로 쓰이는 친수성 막 소재(Polyaminosiloxane, Polyhydroxylsiloxane계열)를 이용한 막 제조와 수증기 투과 실험을 하였다. 제조된 Resin A/Resin C (coupling agent), Resin B/Resin C막을 이용하여 기체투과 및 증기투과법을 통하여 수증기/공기의 투과 및 투과 선택도에 대해 나타내었다. 수증기 투과량은 Resin A에 대한 Resin C의 함량이 3 wt%도입 되었을 때가 1 wt%, 5 wt%보다 투과량이 많음을 알 수 있었고, 온도증가와 함께 수증기 투과량이 증가함을 알 수 있다. 동적 평형 흡습실험을 통한 흡습능력 역시 최대가 됨을 알 수 있다. 수증기 투과 성능은 $25^{\circ}C$에서 최대 43578 Barrer(1 Barrer = $10^{-10}cm^3(STP){\cdot}cm/cm^2{\cdot}s{\cdot}cmHg$), $35^{\circ}C$에서 53000 Barrer의 높은 투과 성능을 나타내었으며 투과 선택도는 $P(H_2O)P(Air)$는 101.3, 102.6를 각각 나타내었다.

Keywords

References

  1. 차순우, 문정우, 박현수, 최경희, 이종협, '산업단지의 휘발성유기 화합물의 관리방향', NICE, 19(5) (2001)
  2. Richard Baker, 'Future directions of gas-separation technology', Memb. Tech. 2001(138), 5-10 (2001)
  3. William J. Schell, and Spiral-Wound, 'Permeators for Purification and recovery', Chemical Engineering Process, 18(10), 36 (1982)
  4. Vineet K, Gupta and Nishith Verma, 'Removal of volatile organic compounds by cryogenic condensation followed by adsorption'. Chemical Engineering Sci., 57(14) 2679-2696 (2002) https://doi.org/10.1016/S0009-2509(02)00158-6
  5. 환경부, 대기환경규제지역 휘발성 유기화합물질 배출시설 규제 업무 편람 (1999)
  6. R. G. Mcinnes, 'Explore and New Option for Hazardous Air Pollytant Control', Chemical Engineering Progress, 36, 48 (1995)
  7. Yusei Hirayama, Yoji Kase, Nozomu Tanihara, Yoshiyuki Sumiyama, Yoshihiro Kusuki, and Kenji Haraya, 'Permeation properties to $CO_2$ and $N_2$ of Poly(ethylene oxide)-containing and crosslinked polymer films', J. Memb. sci., 160(15) 87-99 (1999) https://doi.org/10.1016/S0376-7388(99)00080-0
  8. Dongliang Wang, K. Li, and W. K. Teo, 'Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes' J. Memb. Sci., 163, 211-220 (1999) https://doi.org/10.1016/S0376-7388(99)00181-7
  9. 박진상, '비대칭 Polyetherimide막의 구조형성에 있어 ${\gamma}-Butyrolactone$ 첨가의 영향에 관한 연구', 고려대학교 대학원 (1999)
  10. M. Kaddor Djeebbar, Q. T. Nguyen, R. Clement, and Y. Germain, 'Pervaporation of aqueous ester solutions through hydrophobic poly(ether-block-amide) copolymer membranes' J. Memb. Sci., 146, 125 (1998) https://doi.org/10.1016/S0376-7388(98)00090-8
  11. R. Jiraratananon, P. Sampranpiboon, D. Uttapap, and R. Y. M. Huang, 'Pervaporation separation and mass transport of ethylbutanoate solution by polyether block amide (PEBA) membranes' J. Memb. Sci., 210, 389 (2002) https://doi.org/10.1016/S0376-7388(02)00420-9
  12. C. C. Ciao, 'Surface modified gas separation membranes', US patent 4, 828, 585, Midland, USA (1989)
  13. S. Y. Nam, Y. J. Kim, S. W. Cheon, and J. W. Rhim, 'Removal of VOCs from water by vapor permaetion through PU/PDMS membrane', Membrane J., 14(2), 157 (2004)
  14. A. Stanciu, A. Airinei, 'Polyurethane/polydimethylsiloxane segmented copolymers' European Polym. J., 35 (1999)