Comparison of histologic observation and insertional and removal torque values between titanium grade 2 and 4 microimplants

Grade 2, 4 티타늄 마이크로 임플랜트의 식립 및 제거 토크와 식립 후 조직학적 반응의 비교

  • Kang, Sung-Taek (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Sung, Jae-Hyun (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Kyung, Hee-Moon (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Park, Hyo-Sang (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Kwon, Oh-Won (Department of Orthodontics, School of Dentistry, Kyungpook National University)
  • 강승택 (경북대학교 치과대학 교정학교실) ;
  • 성재현 (경북대학교 치과대학 교정학교실) ;
  • 경희문 (경북대학교 치과대학 교정학교실) ;
  • 박효상 (경북대학교 치과대학 교정학교실) ;
  • 권오원 (경북대학교 치과대학 교정학교실)
  • Published : 2006.06.30

Abstract

The purpose of this study was to evaluate the light microscopic features and the maximum insertional and removal torque value of microimplants, made from titanium grade 2 or 4, in the tibia of 6 rabbits. First, the maximum torque values of microimplants at implantation were measured. After 2, 8, and 12 weeks of healing time, the microimplant-containing segments of tibia of 2 rabbits were removed and the maximum removal torque of each microimplant were measured. Comparisons of histologic examination and insertional and removal torque values were carried out for the two groups of microimplants. Removal torque values were significantly increased in both groups after 8 and 12 weeks as compared to 2 weeks after implantation. Other values measured did not show any statistically significant differences and there were no histological differences between grade 2 and 4 titanium. Based on these results, this study showed that there were no significant differences between grade 2 and 4 titanium. It seems better to use grade 4 titanium for making microimplants because grade 4 titanium is mechanically harder than grade 2 titanium and has similar retention.

마이크로 임플랜트는 순티타늄과 티타늄 합금을 사용하고 있다. 순티타늄의 경우 grade가 낮을 수록 생체적합성은 증가하나 기계적 성질이 낮다. 이에 본 연구에서는 순티타늄 grade 2와 grade 4를 재료로 한 마이크로 임플랜트를 각각 토끼의 다리뼈에 식립한 후 2, 8, 12주의 시간경과에 따른 조직학적 소견의 차이와 식립, 제거 시의 최대토크의 측정으로 그 티타늄 종류에 따른 차이를 살펴보았다. 토끼의 경골에 식립한 티타늄의 종류에 따른 식립시 및 시간의 경과에 따른 제거시의 토크를 측정하여 다음과 같은 결론을 얻었다. 첫째, grade 2와 grade 4간의 식립 시 최대 토크의 차이는 없었다. 둘째, 식립 후 2, 8, 12주 후의 제거 시 최대토크 측정에서 전체 마이크로 임플랜트의 그룹간 차이는 없었다. 셋째, 2주에서 8주로 시간이 경과함에 따라 제거 시 최대토크가 유의하게 증가하였으며 8주와 12주간에는 유의한 상관관계가 없었다. 따라서 유지력은 grade 2 티타늄과 비슷하지만 물리적 성질이 더 단단한 grade 4 티타늄을 마이크로 임플랜트 재료로 사용하는 것이 좋은 것으로 생각된다.

Keywords

References

  1. Graber TM, Vanarsdall RL Jr. Orthodontics - current principles and techniques. 2nd ed. St Louis: Mosby: 1994. p. 227-32
  2. Gainsforth BL, Higley LB. A study of orthodontic anchorage possibilities in basal bone. Am J Orthod Oral Surg 1945:31:406-17
  3. Linkow LI. The endosseous blade implant and its use in orthodontics. Int J Orthod 1969:7:149-54
  4. Branemark PI, Breine U, Hallen O, Hanson B, Lindstrom J. Repair of defects in mandible. Scand J Plast Reconstr Surg 1970;4:100-8 https://doi.org/10.3109/02844317009038452
  5. Shapiro PA, Kokich VG. Uses of implants in orthodontics. Dent Clin North Am 1988:32:539-50
  6. Smalley WM, Shapiro PA, Hohl TH, Kokich VG, Branemark PI. Osseointegrated titanium implants for maxillofacial protraction in monkeys. Am J Orthod Dentofacial Orthop 1988:94:285-95 https://doi.org/10.1016/0889-5406(88)90053-4
  7. Block MS, Hoffman DR. A new device for absolute anchorage for orthodontics. Am J Orthod Dentofacial Orthop 1995:107:251-8 https://doi.org/10.1016/S0889-5406(95)70140-0
  8. Wehrbein H, Merz BR, Diedrich P, Glatzmaier J. The use of palatal implants for orthodontic anchorage. Design and clinical application of the orthosystem. Clin Oral Implants Res 1996:7:410-6 https://doi.org/10.1034/j.1600-0501.1996.070416.x
  9. Sugawara J. Dr. Junji Sugawara on the skeletal anchorage system. Interview by Dr. Larry W. White. J Clin Orthod 1999:33:689-96
  10. Creekmore TD, Eklund MK. The possibility of skeletal anchorage. J Clin Orthod 1983:17:266-9
  11. Kanomi R. Mini-implant for orthodontic anchorage. J Clin Orthod 1997:31:763-7
  12. Park HS. The skeletal cortical anchorage using titanium microscrew implants. Korean J Orthod 1999:29:699-706
  13. Costa A, Raffaini M, Melsen B. Miniscrews as orthodontic anchorage:A preliminary report. Int J Adult Orthod Orthognath Surg 1998;13:201-9
  14. Sisk AL, Steflik DE, Parr GR, Hanes PJ. A light and electron microscopic comparison of osseointegration of six implant types. J Oral Maxillofac Surg 1992;50:709-16 https://doi.org/10.1016/0278-2391(92)90104-8
  15. Johansson CB, Han CH, Wennerberg A, Albrektsson T. A quantitative comparison of machined commercially pure titanium and titanium - aluminum - vanadium implants in rabbit bone. Int J Oral Maxillofac Implants 1998;13:315-21
  16. Han CH, Johansson CB, Wennerberg A, Albrektsson T. Quantitative and qualitative investigations of surface enlarged titanium and titanium alloy implants. Clin Oral Implants Res 1998;9:1-10 https://doi.org/10.1034/j.1600-0501.1998.090101.x
  17. 한국치과재료학교수협의회. 치과재료학, 둘째판. 서울: 군자출판사; 1998. p. 522-7
  18. Branemark PI. Osseointegration and its experimental background. J Prosthet Dent 1983;50:399-410 https://doi.org/10.1016/S0022-3913(83)80101-2
  19. 문철현. SAS의 임상적 적용과 실패의 원인 및 대책. 서울: 나래출판사; 2002. p. 26
  20. 박효상. Microimplant를 이용한 교정치료. 서울: 나래출판사; 2001. p. 20,187-90
  21. Albrektsson T, Branernark PI, Hansson HA, Lindsrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981;52:155-70 https://doi.org/10.3109/17453678108991776
  22. Albrektsson T, Branemark PI, Hansson HA, Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981;52:155-70 https://doi.org/10.3109/17453678108991776
  23. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991;25:889-902 https://doi.org/10.1002/jbm.820250708
  24. Carlsson L, Rostlund T, Albrektsson B, Albrektsson T. Implant fixation improved by close fit. Cylindrical implant-bone interface studied in rabbits. Acta Orthop Scand 1988;59:272-5 https://doi.org/10.3109/17453678809149361
  25. Johansson C, Albrektsson T. Integration of screw implants in the rabbit: a 1-year follow-up of removal torque of titanium implants. Int J Oral Maxillofac Implants 1987;2:69-75
  26. Ericsson I, Johansson CB, Bystedt H, Norton MR. A histomorphometric evaluation of bone-to-implant contact on machine-prepared and roughened titanium dental implants. A pilot study in the dog. Clin Oral Implants Res 1994;5:202-6 https://doi.org/10.1034/j.1600-0501.1994.050402.x
  27. Masuda T, Yliheikkila PK, Felton DA, Cooper LF. Generalizations regarding the process and phenomenon of osseointegration, Part I. In Vivo Studies. Int J Oral Maxillofac Implants 1998;13:17-29
  28. 이상철, 송우식. 임플랜트 표면처리 방법에 따른 골유착의 조직계측학적 분석 및 제거회전력 비교 연구. 대한악성재건외지 2001;23:396-405
  29. Roberts WE, Smith RK, Zilberman Y, Mozsary PG, Smith RS. Osseous adaptation to continuous loading of rigid endosseous implants. Am J Orthod 1984;86:95-111 https://doi.org/10.1016/0002-9416(84)90301-4
  30. Jansen JA, van de Waerden JP, Wolke JG, de Groot K. Histologic evaluation of the osseous adaptation to titanium and hydroxyapatite-coated titanium implants. J Biomed Mater Res 1991;25:973-89 https://doi.org/10.1002/jbm.820250805
  31. 원중희, 서중배. 표면변화에 따른 티타늄합금에의 골유착. 충북의대 학술지 1996;6:1-7