온실가스 배출 파라메타를 이용한 고추밭 토양의 N2O 배출 예측

Predicting N2O Emission from Upland Cultivated with Pepper through Related Soil Parameters

  • 김건엽 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 송범헌 (충북대학교 식물자원학과) ;
  • 현병근 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 심교문 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 이정택 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 이종식 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 김원일 (농촌진흥청 농업과학기술원 환경생태과) ;
  • 신중두 (농촌진흥청 농업과학기술원 환경생태과)
  • Kim, Gun-Yeob (National Institute of Agricultural Science and Technology, RDA) ;
  • Song, Beom-Heon (Department of Agronomy, College of Agriculture, Chungbuk National University) ;
  • Hyun, Byung-Keun (National Institute of Agricultural Science and Technology, RDA) ;
  • Shim, Kyo-Moon (National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Jeong-Taek (National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Jong-Sik (National Institute of Agricultural Science and Technology, RDA) ;
  • Kim, Won-Il (National Institute of Agricultural Science and Technology, RDA) ;
  • Shin, Joung-Du (National Institute of Agricultural Science and Technology, RDA)
  • 투고 : 2006.06.16
  • 심사 : 2006.07.25
  • 발행 : 2006.10.30

초록

수원시에 위치한 농업과학기술원 시험포장인 고평통의 식양토와 본량통의 사양토에서 고추를 재배하였다. 식양토와 사양토의 2개 토성을 대상으로 토양 검정한 NPK 시비에 돈분퇴비 $25Mg\;ha^{-1}$를 각 각 시용하였다. 토양의 $N_2O$ 배출량 측정을 한 후 동시에 $N_2O$ 배출에 기여하는 토양수분, 무기태 질소, 지온 등을 측정하였고, 토양수분은 관수시점인 -50 kPa내의 범위로 한정하여 토양의 $N_2O$ 배출량을 실제 측정하였다. 온실가스 배출량을 예측하기 위해 영국의 경험 모델을 이용하여 $N_2O$ 배출의 예측값과 실측값을 비교 분석하였다. $N_2O$ 배출의 실측량과 무기태 질소($NO_3{^-}+NH_4{^+}$)의 관계에서 무기태 질소($NO_3{^-}-N+NH_4{^+}-N$)가 $10mg\;kg^{-1}$ 이하에서 $N_2O$ 배출량이 $1{\sim}10g\;N_2O-N\;ha^{-1}day^{-1}$로 나타나 $N_2O$ 배출에 대한 무기태질소 ($NO_3{^-}-N+NH_4{^+}-N$)의 한계선을 구분할 수 있었으며, 실측값인 토양온도와 WFPS(water filled pore space) 관계에서도 경험 모델의 배출 추정식인 (% WFPS)+{$2{\times}$토양온도($^{\circ}C$)}=90, (% WFPS)+{$2{\times}$토양온도($^{\circ}C$)}=105를 증명 하였다. $N_2O$ 배출의 실측량과 예측량을 1:1 대응한 결과, 식양토와 사양토 각 r=0.962, r=0.974로 나타났다. 고추밭의 $N_2O$ 배출량을 분석한 결과, 예측량과 작기 기간 전체 $N_2O$ 배출량의 비교에서 예측량은 식양토에서 12.2%가 낮게 평가 되었고, 사양토에서는 30%가 높게 평가 되었다. 그리고 토양 파라메타 분석 동시에 1주일에 1회 $N_2O$가스를 포집한 $N_2O$ 배출량에서는 식양토 27.1, 사양토 14.7%가 높게 평가 되었다. 향후 경험 모델의 정밀도를 높이기 위해서는 국내 작물재배환경에 맞는 파라메타의 수정이 필요하며 다양한 작물을 대상으로 연구가 있어야 할 것으로 생각한다.

An empirical model of nitrous oxide emission from agricultural soil has been applied. It is based on the relationship between $N_2O$ and three soil parameters, soil mineral N(ammonium plus nitrate) content in the topsoil(0-15cm), soil water-field pore space, and soil temperature, determined in a study on clay loam and sandy loam at the pepper field in 2004. For comparisons between estimated and observed values of $N_2O$ emissions in the pepper field, it was investigated that $N_2O$ amount in the clay loam and sandy loam were overestimated as 12.2% and less estimated as 30%, respectively. However, $N_2O$ emissions were overestimated as 27.1% in the clay loam and 14.7% in the sandy loam from $N_2O$ gas samples collected once a week at the same time analyzing soil parameters. This modelling approach, based as it is well established and widely used soil measurements, has the potential to provide flux estimates from a much wider range of agricultural sites than would be possible by direct measurement of $N_2O$ emissions.

키워드

참고문헌

  1. Bouwman, A.F. 1996. Direct emissions of nitrous oxide from agricultural soils. Nutrient Cycling in Agroecosystems. 46:53-70 https://doi.org/10.1007/BF00210224
  2. Davidson, E.A. 1991. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrous Oxide and Halomethanes(eds Rogers JE, Whitman WB), pp.219-235. American Soc. of Microbiol., Washington, D.C.
  3. Denmead, O.T. 1979. Chamber systems for measuring nitrous oxide emission from soils in the field. Soil Sci. Soc. of America J. 43:89-95 https://doi.org/10.2136/sssaj1979.03615995004300010016x
  4. Engel, T.H., E. Priesack. 1993. Expert-N, a building block system of nitrogen models as a resource for advice, research, water management and policy, In: Integrated Soil and Sediment Research: a Basis for Protection (eds Eijsackers HJP, Hamers T), pp.503-507. Kluwer, Dordrecht
  5. F. Conen, K.E. Dobbie, and K.A. Smith. 2000. Predicting $N_{2}O$ emissions from agricultural land through related soil parameters. Global Change Biology. 6:417-426 https://doi.org/10.1046/j.1365-2486.2000.00319.x
  6. Frolking, S.E., A.R. Mosier, and D.S. Ojima. 1998. Comparison of $N_{2}O$ emissions from soils at three temperate agricultural sites: simulations of year-round measurements by four models. Nutrient Cycling in Agroecosystems. 52:77-105 https://doi.org/10.1023/A:1009780109748
  7. IPCC(Intergovernmental Panel on Climate Change). 1996. Revised IPCC guideline for national greenhouse gas inventories: Reference Manual, revised in 1996, IPCC
  8. IPCC(Intergovernmental Panel on Climate Change). 1997. Greenhouse gas emissions from agricultural soils. In: Greenhouse Gas Inventory Reference Manual; Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Vol.3, Section 4.5 Agriculture(eds Houghton JT et al.), IPCC/OECD/IEA. UK Meteorological Office, Bracknell, UK
  9. Li, C., S. Frolking, and T. Frolking. 1992. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. J. of Geophysical Res. 97:9759-9776 https://doi.org/10.1029/92JD00509
  10. Parton, W.J., A.R. Mosier, D.S. Ojima, D.W. Valentine, D.S. Schimel, K. Weier, and A.E. Kulmala. 1996. Generalized model for $N_{2}$ and $N_{2}O$ production from nitrification and denitrification. Global Biochem. Cycles. 10:401-412 https://doi.org/10.1029/96GB01455
  11. Potter, C.S., R.H. Riley, and S.A. Klooster. 1997. Simulation modelling of nitrogen trace gas emissions along an age gradient of tropical forest soils. Ecological Modelling. 97:179-196 https://doi.org/10.1016/S0304-3800(96)01903-5
  12. Powlson, D.S., P.G. Saffigna, and M. Kragt-Cottaar. 1998. Denitrification at sub-optimal temperatures in soils from different climatic zones. Soil Biol. and Biochem. 20:719-723 https://doi.org/10.1016/0038-0717(88)90157-5
  13. Prinn, R.D., R. Cunnold, P. Simmonds, F. Alyea, A. Crawford, R. Fraser, and R. Rosen. 1990. Atmospheric emissions and trends of nitrous oxide deduced from 10 years of ALEGAGE data. J. Geophys. Res. 95:18369-18385 https://doi.org/10.1029/JD095iD11p18369
  14. Ryden, J.C. 1983. Denitrification loss from grassland soil in the field receiving different rates of nitrogen as ammonium nitrate. J. of Soil Sci. 34:355-365 https://doi.org/10.1111/j.1365-2389.1983.tb01041.x
  15. Smith, K.A., P.E. Thomson, H. Clayton, I.P. McTaggart, and F. Conen. 1998. Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmospheric Environ. 32:3301-3309 https://doi.org/10.1016/S1352-2310(97)00492-5
  16. Velthof, G., J.G. Koops., J.H. Duyzer, and O. Oenema. 1998. Prediction of nitrous oxide fluxes from managed grassland on peat soil using a simple empirical model. Netherlands J. of Agr. Sci. 44:339-356
  17. Webb, R.A. 1972. Use of boundary line analysis of biological data. J. of Horticultural Sci. 47:309-319 https://doi.org/10.1080/00221589.1972.11514472
  18. Weier, K.L., J.W. Doran, J.F. Power, and D.T. Walters. 1993. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Sci. Soc. of Am. J. 57:66-72 https://doi.org/10.2136/sssaj1993.03615995005700010013x