DOI QR코드

DOI QR Code

Genetic Parameter Estimation of Carcass Traits of Duroc Predicted Using Ultrasound Scanning Modes

  • Salces, Agapita J. (Animal Genetic Evaluation Division, National Livestock Research Institute) ;
  • Seo, Kang Seok (NLRI) ;
  • Cho, Kyu Ho (Swine Division, National Livestock Research Institute) ;
  • Kim, SiDong (Animal Genetic Evaluation Division, National Livestock Research Institute) ;
  • Lee, Young Chang (Animal Genetic Evaluation Division, National Livestock Research Institute)
  • 투고 : 2005.09.29
  • 심사 : 2006.04.04
  • 발행 : 2006.10.01

초록

A total of 6,804 records for Duroc breed were collected from three farms registered at the Korean Animal Improvement Association (KAIA) from 1998 to 2004 of which both records from two ultrasound modes (A and B) were analyzed to estimate the variance components of carcass traits. Three carcass traits backfat thickness (bf), loin eye muscle area (lma) and lean meat percentage (lmp) were measured. These traits were analyzed separately as bf1, lma1 and lmp1 for ultrasound mode A and bf2, lma2 and lmp2 for ultrasound mode B with multiple trait animal model by using MTDFREML (Boldman et al., 1993). All the traits revealed medium heritability values. Estimated heritabilities for bf1, bf2, lma1, lma2, lmp1 and lmp2 were 0.45, 0.39, 0.32, 0.25, 0.28 and 0.39, respectively. Estimated genetic correlations for traits bf1 and bf2, lma1 and lma2, lmp1 and lmp2 were positive but low. Specifically, genetic correlations between bf1 and bf2 was 0.30 while the estimates for lean traits between lma1 and lma2 and between lmp1 and lmp2 were 0.15 and 0.18, respectively. Conversely, high negative genetic correlations existed between bf1 and the lean traits lma2, lmp2. Likewise, the estimated genetic correlations between lma1 and lma2 and lmp1 and lmp2 were low.

키워드

참고문헌

  1. Arganosa, V. G., I. T. Omtveld and L. E. Walters. 1969. Phenotypic and genotypic parameters of some carcass traits in swine. J. Anim. Sci. 28:166
  2. Bereskin, B. 1987. Genetic and phenotypic parameters for pig growth and body composition estimated by intraclass correlation and parent-offspring regression. J. Anim. Sci. 64:1619 https://doi.org/10.2527/jas1987.6461619x
  3. Bereskin, B. and N. C. Steele. 1988. Estimates of genetic parameters for carcass measures of body composition and growth in swine. J. Anim. Sci. 66:2498 https://doi.org/10.2527/jas1988.66102498x
  4. Boldman, K. G., L. A. Kriese, L. D. Vleck and S. D. Kachman. 1993. A Manual for use of MTDFREML. A set of program to obtain estimates of variances and covariances [Draft]. U.S. Department of Agricultural Research Service
  5. Bryner, S. M., J. W. Marby, J. K. Bertrand, L. L. Benyshek and L. A. Kriese. 1992. Estimation of direct and maternal heritability and genetic correlation for backfat and growth rate in swine using data from centrally tested Yorkshire boars. J. Anim. Sci. 70:1755-1759 https://doi.org/10.2527/1992.7061755x
  6. Chen, P., T. J. Baas, J. W. Marby, J. C. M. Dekkers and K. J. Koehler. 2002. Genetic parameters and trends for lean growth rate and its components in U.S. Yorkshire, Duroc, Hamshire and Landrace pigs. J. Anim. Sci. 80:2062-2070
  7. Choi, C. S., I. J. Lee, K. H. Cho, K. S. Seo and J. Lee. 2004. Estimation of genetic parameters for economic traits in swine. J. Anim. Sci. Technol. (Kor) 46(2)
  8. Ferraz, J. B. S. and R. K. Johnson. 1993. Animal model estimation of genetic parameters and response to selection for litter size and weight, growth and backfat in closed seedstock populations of Large White and Landrace swine. J. Anim. Sci. 71:850-858
  9. Hicks, C., M. Satoh, K. Ishii and S. Kuroki. 1999. Effect of sex on estimates of genetic parameters for daily gain and ultrasonic backfat thickness in swine. Asian-Aust. J. Anim. Sci. 12:677- 681 https://doi.org/10.5713/ajas.1999.677
  10. Hutchens, L.K., R. L. Hintz and R. K. Johnson. 1981. Genetic and phenotypic relationships between pubertal and growth characteristics of gilts. J. Anim. Sci. 53:946-951 https://doi.org/10.2527/jas1981.534946x
  11. Kaplon, M. J., M. F. Rothschild, P. J. Berger and M. Healey. 1991. Population parameter estimates for performance and reproductive traits in Polish Large White nucleus herds. J. Anim. Sci. 69:91 https://doi.org/10.2527/1991.69191x
  12. Kennedy, B. W., K. Johansson and G. F. S. Hudon. 1985. Heritabilities and genetic correlations for backfat and age at 90 kg in performance-tested pigs. J. Anim. Sci. 61:78-82 https://doi.org/10.2527/jas1985.61178x
  13. Kim, J. I., Y. G. Sohn, J. H. Jung and Y. I. Park. 2004. Genetic parameter estimates for backfat thickness at three different sites and growth rate in swine. Asian-Aust. J. Anim. Sci. 17:305-308 https://doi.org/10.5713/ajas.2004.305
  14. Kuhlers, D. L. and S. B. Jungst. 1992. Correlated responses in reproductive and carcass traits to selection for 200-day weight is Duroc swine. J. Anim. Sci. 70:2707-2713 https://doi.org/10.2527/1992.7092707x
  15. Li, X. and B. W. Kennedy. 1994. Genetic parameters for growth rate and backfat in Canadian Yorkshire, Landrace, Duroc and Hampshire pigs. J. Anim. Sci. 72:1450
  16. Lo, L. L., D. G. McLaren, F. K. McKeith, R. L. Fernando and J. Novakofski. 1992. Genetic analyses of growth, real-time ultrasound, carcass, and pork quality traits in Duroc and Landrace pigs: II. Heritabilities and correlations. J. Anim. Sci. 70:2387-2396 https://doi.org/10.2527/1992.7082387x
  17. Lundstorm, K. 1975. Genetic Parameters estimated on data from the Swedish pig progeny testing with special emphasis on meat color. Swed. J. Agric. Res. 5:209
  18. Moeller, S. J. and L. L. Christian. 1998. Evaluation of accuracy of real-time ultrasonic measurements of backfat and loin muscle area in swine using multiple statistical analysis procedures. J. Anim. Sci. 76:2503-2514 https://doi.org/10.2527/1998.76102503x
  19. Moeller, S. J. 2002. Evolution and use of ultrasonic technology in the swine industry. J. Anim. Sci. 80 (E. Suppl.2) E19-27 https://doi.org/10.2527/animalsci2002.80E-Suppl_2E19x
  20. Mrode, R. A. and B. W. Kennedy. 1993. Genetic variation in measures of food efficiency in pigs and their genetic relationships with growth and backfat. Anim. Prod. 56:225-232 https://doi.org/10.1017/S0003356100021309
  21. Newcom, D. W., T. J. Baas, J. W. Marby and R. N. Goodwin. 2002. Genetic parameters for pork carcass components. J. Anim. Sci. 80:3099-3106
  22. NSIF. 1987. Guidelines for Uniform Swine Improvement Programs. (Ed. C. J. Christians) National Swine Improvement Federation/Sci. Education Admin./USDA/National Pork Producers Council, Des Moines, IA
  23. SAS. 1991. SAS User's Guide Statistical Analysis System Institute, Cary NC
  24. Sather, A. P., A. K. W. Tong and D. S. Harbison. 1986. A study of ultrasonic probing techniques for swine. I. The effect of operator machine site. Can. J. Anim. Sci. 66:591-598 https://doi.org/10.4141/cjas86-065
  25. Sloan, A. E., L. C. Leone, M. Powers and K. W. McNutt. 1984. Changing consumer lifestyles. Food Technol. 38:99
  26. Stewart, T. S. and A .P. Schinckel. 1990. Genetic parameters for swine growth and carcass traits. In Genetics of Swine. (Ed. L. D. Young). North central Reg. Pub. USDA, Clay Center, NE
  27. Swiger, L. A., G. A. Isler and W. A. Harvey. 1979. Postweaning genetic parameters and indexes for swine. J. Anim. Sci. 48:1096-1100 https://doi.org/10.2527/jas1979.4851096x
  28. Van Diepen, T. A. and B. W. Kennedy. 1989. Genetic correlations between test station and on-farm performance for growth rate and backfat in pigs. J. Anim. Sci. 67:1425 https://doi.org/10.2527/jas1989.6761425x
  29. Wilson, D. E. 1992. Application of ultrasound for genetic improvement. J. Anim. Sci. 70:973-983 https://doi.org/10.2527/1992.703973x

피인용 문헌

  1. Maternal and Direct Genetic Parameters for Production Traits and Maternal Correlations among Production and Feed Efficiency Traits in Duroc Pigs vol.21, pp.7, 2006, https://doi.org/10.5713/ajas.2008.70641
  2. Genetic and phenotypic relationships of live body measurement traits and carcass traits in crossbred pigs of Korea vol.41, pp.3, 2006, https://doi.org/10.7744/cnujas.2014.41.3.229