Biphenyl의 Sphingobium yanoikuyae BK-10에 의한 분해 특성

Biodegradation of Biphenyl by Sphingbium yanoikuyae BK-10

  • Lee Jung-Bok (The School of Bioresource Science, Andong National University) ;
  • Kim Dong-Geol (The School of Bioresource Science, Andong National University) ;
  • Choi Chung-Sig (HansBio Co.) ;
  • Sohn Ho-Yong (Dept. of Food and Nutrition, Andong National University) ;
  • Kim Jang-Eok (Dept. Argicultural Chemistry, Kyungpook National University) ;
  • Kwon Gi-Seok (The School of Bioresource Science, Andong National University)
  • 발행 : 2006.06.01

초록

PCBs(polychlorinated biphenyl)는 난분해성 물질로써, 환경호르몬으로 분류된 유독한 화합물이다. 이런 유독한 화합물인 PCBs 화합물이 오염된 토양 및 수계를 회복하기 위해 PCBs의 모체인 biphenyl을 효과적으로 분해하는 미생물을 토양으로부터 분리 선별하여 S. yanoikuyae BK10 (AF406817)와 같이 분해능이 우수한 균주를 분리하였다. 분리된 S. yanoikuyae BK10의 특성을 조사하기 위하여 자연계의 토양 조건인 pH 5.0$\sim$8.0에서 99%이상의 높은 biphenyl 분해효율을 보였다. 또한, 온도를 달리하여 실험 한 결과, 10$\sim$50$^{\circ}C$의 범위에서 모두 70%이상의 높은 분해효율을 보여줌으로써 실제 biphenyl/PCBs로_오염된 토양에서 온도의 영향을 덜 받고 biphenyl을 효과적으로 분해 할 수 있을 것으로 생각된다. S. yanoikuyae BK10는 biphenyl이 500 $\mu$g/ml으로 처리된 mineral salt 배지에서 48시간동안 99% 이상의 biphenyl을 분해하는 높은 분해활성을 보이며, biphenyl을 mineralization 시키는 것으로 판단된다. 또한 biphenyl 분해효소 유도 실험결과는 기질을 biphenyl로 사용하여 증식한 균체가 다른 기질을 사용해서 증식한 균체보다 약 2배가량 biphenyl을 빨리 분해시켰다. 그렇지만, cell-mass를 많이 얻을 수 있는 당을 탄소원으로 사용하여 배양하였을 때에도 단시간 내에 biphenyl분해 효소를 분비하여 biphenyl을 분해하는 것으로 보아, S. yanoikuyae BK10는 실제 biphenyl/PCBs에 오염된 토양 적용 할 경우 안정적으로 균주의 제공이 가능하다고 판단된다. 이상의 결과를 토대로, 토양에서부터 분리한 S. yanoikuyae BK10는 자연계에서 유해화합물인 biphenyl/PCBs을 효과적으로 분해 할 수 있다고 생각되며, 분리균주인 S. yanoikuyae BK10의 분자 생물학적 특성을 조사하여 biphenyl과 PCBs를 분해하는 유전자 탐색에 유용한 정보를 얻을 수 있을 것으로 사료된다.

Bacterium capable of using biphenyl as a sole source of carbon and energy were isolated from soil, and based on the results of 16S rDNA sequence, strain BK10 identified as a Sphingobium yanoiktiyae. The optimum cultural conditions were as follows; $NH_4NO_3$ 1g, $K_2HPO_4$ 1g, $MgSO_4{\cdot}7H_2O$ 0.5g, $CaCO_3$ 0.2 g per 1 liter of distilled water. The Sphingobium yanoikuyae BK10 strain was completely utilized biphenyl in mineral salt media containing biphenyl at concentration 500 $\mu$g/ml of biphenyl as a sole carbon and energy source within 48 hours. Optimumal pH and temperature for biphenyl degradation and cell growth of strains were 6.0$\sim$8.0 and 20$\sim$50$^{\circ}C$, respectively. Especially, at 30$^{\circ}C$, cell-growth were higher than other temperature. Cell grown on biphenyl has been shown to have a higher removal rate for biphenyl than grown on sucrose. This study shows that Sphingobium yanoikuyae BK10 strain had a high biodegradation capability of biphenyl and can be simulate a candidate compounds the bioremediation of PCBs (Polychlorinated biphenyl) contaminant soil and water.

키워드

참고문헌

  1. Eracksdon, B. D. and F. J. Mondello. 1992. Nucletide sequencing and transcriptional mepping of the gens encoding biphenyl dioxygenase, a multicomponent polychlorinated-biphenyl-degarading enzyme in Psedomonas strain LB400. J. Bacterial. 174: 2903-2912
  2. Furukawa, K. 1982. Micro degradation of polychlorinated biphenyl(PCBs), pp. 33-57. In A. M. Chakrabarty(ed), Biodegradation and detoxification of environmental pollutants. CRC Press Inc. Boca Raton, Pta
  3. Furukawa, K. and T. Miyazaki. 1986. Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Psedomonas pseudoalcaligens. J. Bacteriol. 166: 392-398
  4. Fukawa, K., N. Tomizuka, and A. Kamibayashi. 1979. Effect of chlorine substitution the bacterial metabolism of various polychlorinated biphenyls. Appl. Environ. Microbiol. 38: 301-310
  5. Fukawa, K., N. Hayase, K. Taira, and N. Tomizuka. 1989. Molecular relationship of chromosomal genes Encoding biphenyl/polychlorinated biphenyls catabolism: Some soil bacteria posses a highly conserved bph operon. J. Bacteriol. 171: 5467-5472
  6. Hayase, N., K. Taira, and K. Furukawa. 1990. Pseudomonas putida KF715 bphABCD operon encoding biphenyl and polychlorinated biphenyl degrader. Cloning analysis, and expression in soil bacteria. J. Bacteriol. 172: 1160-1164
  7. Kimbara, K., T. Hashimotom, M. Fuluda, T. Koana, M. Takagi, M. Oishi, and K. Yano. 1989. Cloning and sequcing of two tandem genes involved in degradation of 2,3dihydroxybiphenyl to benzoic and in the polychlirinated biphenyl-degrading soil bacterium Pseudomonas sp KKS102. J. Bacteriol. 171: 2704-2747
  8. Kim, E and G. J. Zylstra. 1995. Molecular and biochemical characterization of two meta-cleavage dioxygenase involved in biphenyl and m-xylene degradation by Beijerinckia sp. strains B1. J. Bacteriol. 177: 3095-3103
  9. Kim, J. H., S. K. Choi, and Y. H. Kim. 1996. Biodegradation of Polychlorinated Biphenyl (PCBs) within Insulating Oil by Pseudomonas sp. P2. Kor. J. Env. Health. Soc. 22: 1-7
  10. Kwon, J. K. 1999. Isolation and Characterization of Sphingomonas sp. KMG425 degrading Polychlorinated Biphenyls (PCBs)., Ms.D. Thesis, Kyungpook National University
  11. Lee, N., J. M. Lee, K. H. Min, and D. Y. Kwon. 2003. Purification and Characterization of 2,3-Dihydroxybiphenyl 1,2-Dioxyganase from Comamonas sp. SMN4. J. Microbiol Biotechnol. 13: 487-494
  12. Lee, N. R., H. Y. On, M. S. Jeong, C. K. Kim, Y. K. Park, J. O. Ka, and K. H. Min. 1997. Characterization of Biphenyl Biodegradation, and Regulation of Biphenyl Catabolism in Alcaligenes xylosoxydans. J. Microbiol. 35: 141-148
  13. Masai, E., A. Yamada, J. M. Healy, T. Hatta, K. Kimbara, M. Fukuda, and K. Yano. 1995. Characterization of biphenyl catabolic genes of Gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA J. Appl. Environ. Microbiol. 61: 2079-2085
  14. Monello, F. J. 1989. Cloning and express in Escherichia coli of Pseudomonas strain LB400 genes encoding polychlorinated biphenyl degradation. J. Bacteriol. 171: 1725-1732
  15. Oh, H. Y., N. R. Lee, Y. C. Kim, C. K. Kim, Y. S. Kim, Y. K. Park, J. O. Ka, K. S. Lee, and K. H. Min. 1998. Extradiol Cleavage of Two-ring Structures of Biphenyl and Indole Oxidation by Biphenyl Dioxygenase in Comamonas Acidovorans. J. Microbiol. Biotechnol. 8: 264-269
  16. Sittg, M. 1985. Handbook of Toxic and Hazaradous Chemicals and Carcinogens. 2nd ed. Noyes Publications, Pak Ridge, NJ
  17. U.S. Department of Health and Human Service. 1993. Hazardous Substance Data Bank (HSDB, online database). National Toxicology Information Program, Nation Library of Medicine, Bethesda, MD.)
  18. Wanger-Dobler J., A. Bennasar, M. Vancanneyt, C. Strompl, J. Brummer, C. Eichner, J. Grammel, And E. R. B. Moore. 1998. Microcosm Enrichment of Biphenyl-Degrading Microbial Communities from Soils and Sediment. Appl. Environ. Microbiol. 64: 3014-3022
  19. Yoon, J. H., S. B. Kim, H. J. Kim, W. Y. Kim, S. T. Lee, M. Goodfellow, and Y. H. Park. 1996. Identification of Saccharomonospora strains by the use of genomic DNA fragments rRNA gene probes. Int. J. Syst Bacteriol. 46: 502-505
  20. Yoon, J. H., S. T. Lee, and Y. H. Park. 1998. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J. Syst. Bacterial. 48: 187-194
  21. Yoon, J. H., S. T. Lee, S. B. Kim, W. Y. Kim, M. Goodfellow, and Y. H. Park. 1997. Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharamanaspora strains. Int. J. Syst. Bacterial. 47: 111-114