Optimal Design of Nonlinear Squeeze Film Damper Using Hybrid Global Optimization Technique

  • Ahn Young-Kong (Get-Pearl Tower) ;
  • Kim Yong-Han (School of Engineering Systems, Queensland University of Technology) ;
  • Yang Bo-Suk (School of Mechanical Engineering, Pukyong National University) ;
  • Ahn Kyoung-Kwan (Research Center for Machine Parts and Material Processing, School of Mechanical & Automotive Engineering, University of Ulsan) ;
  • Morishita Shin (Graduate School of Environment and Information Sciences, Yokohama National University)
  • Published : 2006.08.01

Abstract

The optimal design of the squeeze film damper (SFD) for rotor system has been studied in previous researches. However, these researches have not been considering jumping or nonlinear phenomena of a rotor system with SFD. This paper represents an optimization technique for linear and nonlinear response of a simple rotor system with SFDs by using a hybrid GA-SA algorithm which combined enhanced genetic algorithm (GA) with simulated annealing algorithm (SA). The damper design parameters are the radius, length and radial clearance of the damper. The objective function is to minimize the transmitted load between SFD and foundation at the operating and critical speeds of the rotor system with SFD which has linear and nonlinear unbalance responses. The numerical results show that the transmitted load of the SFD is greatly reduced in linear and nonlinear responses for the rotor system.

Keywords

References

  1. Ahn, Y. K., Kim, Y. C. and Yang, B. S., 2003, 'Optimal Design of a Squeeze Film Damper Using an Enhanced Genetic Algorithm,' KSME International Journal, Vol. 17, No. 12, pp. 1938-1948 https://doi.org/10.1007/BF02982433
  2. Ahn, Y. K., Morishita, S. and Yang, B. S., 1998, 'Directionally Controllable Squeeze Film Damper Using Liquid Crystal,' KSME International Journal, Vol. 12, No.6, pp. 1097-1103 https://doi.org/10.1007/BF02942583
  3. Barrett, L. E., Gunter, E. J. and Allaire, P. E., 1978, 'Optimum Bearing and Support Damping for Unbalance Response and Stability of Rotating Machinery,' Trans. ASME Journal of Engineering for Power, Vol. 100, pp. 89-94 https://doi.org/10.1115/1.3446331
  4. Box, M. J., 1965, 'A New Method of Constrained Optimization and a Comparison with Other Methods,' The Computer Journal, Vol. 8, No.1, pp.42-52 https://doi.org/10.1093/comjnl/8.1.42
  5. Chen, W. J., Rajan, M., Rajan, S. D. and Nelson, H. D., 1988, 'The Optimal Design of Squeeze Film Dampers for Flexible Rotor System,' Trans. ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, pp. 166-174 https://doi.org/10.1115/1.3258922
  6. Cunningham, R. E., Fleming, D. P. and Gunter, E. J., 1975, 'Design of a Squeeze Film Damper for a Multi-Mass Flexibler Rotor,' Trans. ASME Journal of Engineering for Industry, Vol. 97, No. 4, pp. 1383-1389 https://doi.org/10.1115/1.3438794
  7. El-Shafei, A. and Yakoub, R. Y. K., 2002, 'Optimum Design of Squeeze Film Dampers Supporting Multi-Mode Rotors,' Trans. ASME Journal of Engineering for Gas Turbines and Power, Vol. 124, pp. 993-1002
  8. Feng, N. S. and Hahn, E. J., 1989, 'Inlet pressure and cavitation boundary effects on the orbit jump phenomenon in squeeze film damper operation,' Proc. I. Mech. E., Part C, J. of Mechanical Engineering Science, Vol. 203, pp.209-217 https://doi.org/10.1243/PIME_PROC_1989_203_105_02
  9. Friswell, M. I. and Mottershead, J. E., 1996, 'Finite Element Model Updating in Structural Dynamics,' Kluwer Academic Publishers
  10. Goldberg, D. E., 1989, 'Genetic Algorithms in Search, Optimization, and Machine Learning,' Addison-Wesly, New York
  11. Greenhill, L. M. and Nelson, H. D., 1981, 'Iterative Determination of Squeeze Film Damper Eccentricity for Flexible Rotor Systems,' Trans. ASME Journal of Mechanical Design, Vol. 104, No.2, pp. 334-338
  12. Gunter, E. J., Barrett, L. E. and Allaire, P. E., 1977, 'Design of Nonlinear Squeeze-Film Dampers for Aircraft Engines,' Trans. ASME Journal of Lubrication Technology, Vol. 99, No.1, pp.57-64 https://doi.org/10.1115/1.3452990
  13. Hashimoto, H., 1997, 'Optimum Design of High-Speed, Short Journal Bearings by Mathematical Programming,' Tribology Transactions, Vol. 40, pp. 283-293 https://doi.org/10.1080/10402009708983657
  14. Holmes, R. and Dogan, M., 1982, 'Investigation of a Rotor Bearing Assembly Incorporating a Squeeze Film Damper Bearing,' Trans. ASME Journal of Mechanical Engineering Science, Vol. 24, No.2, pp. 129-137 https://doi.org/10.1243/JMES_JOUR_1982_024_026_02
  15. Inayat-Hussain, J. I., Kanki, H. and Mureithi, N. W., 2003, 'On the Bifurcations of a Rigid Rotor Response in Squeeze Film Dampers,' Journal of Fluids and Structures, Vol. 17, pp.433-459 https://doi.org/10.1016/S0889-9746(02)00146-9
  16. Ingber, L. and Rosen, B., 1992, 'Genetic Algorithms and Very Fast simulated Re-annealing : a Comparison,' Mathematic Computational Modeling, Vol. 16, pp. 87-100 https://doi.org/10.1016/0895-7177(92)90108-W
  17. Jung, S. Y., Chun, C. C. and Sim, S. G., 1992, 'Steady State Response of a Rotor Supported on Cavitated Squeeze Film Dampers,' The Korean Society for Noise and Vibration Engineering, Vol. 2, No.3, pp. 213-222
  18. Kim, Y. C., 2003, 'Development of Enhanced Genetic Algorithm and Its Applications to Optimum Design of Rotating Machinery,' Ph.D Dissertation, Pukyong National Univ., South Korea
  19. Kim, Y. H., Yang, B. S., Kim, Y. C. and Lee, S. J., 2003, 'Bearing Parameter Identification Using Hybrid Optimization,' The 32th International Congress and Exposition on Noise Control Engineering, Jeju, South Korea, pp. 4212-4219
  20. Kirpatrick, S. C. D., Gelatt, M. P. and Vecchi, 1983, 'Optimization by Simulated Annealing,' Science, Vol. 220, No. 4598, pp. 671-680 https://doi.org/10.1126/science.220.4598.671
  21. Li, X. and Taylor, D. L., 1987, 'Nonsynchronous motion of Squeeze Film Damper systems,' ASME Journal of Tribology, Vol. 109, pp.169-176 https://doi.org/10.1115/1.3261312
  22. Lin, Y., Cheng, L. and Huang, T. P., 1998, 'Optimal Design of Complex Flexible RotorSupport Using Minimum Strain Energy Under Multi-Constraint Conditions,' Journal of Sound and Vibration, Vol. 215, No.5, pp. 1121-1134 https://doi.org/10.1006/jsvi.1998.1690
  23. Lubell, D. and San Andres, L., 1998, 'Imbalance Response of a Test Rotor Supported on Squeeze Film Dampers,' ASME Journal of Engineering for Gas Turbines and Power, Vol. 120, No.2, pp. 397-404 https://doi.org/10.1115/1.2818136
  24. Mohan, S. and Hahn, E. J., 1974, 'Design of Squeeze Film Damper Supports for Rigid Rotors,' Trans. ASME Journal of Engineering for Industry, Vol. 96, No.3, pp. 976-982 https://doi.org/10.1115/1.3438470
  25. Nataraj, C. and Ashrafiuon, H., 1993, 'Optimal Design of Centered Squeeze Film Damper,' Trans. ASME Journal of Vibration and Acoustics, Vol. 105, pp. 211-215
  26. Nelder, J. A. and Mead, R., 1965, 'A Simplex Method for Function Minimization,' The Computer Journal, Vol. 7, pp. 308-313 https://doi.org/10.1093/comjnl/7.4.308
  27. Powell, M. J. D., 1978, 'A Fast Algorithm for Nonlinearly Constrained Optimization Calculations,' in: G.A. Watson (Ed.), Nemerical Analysis, Lecture Notes in Mathematics, Springer Verlag, Vol. 630
  28. Rabinowitz, M. D. and Hahn, E. J., 1983, 'Optimal Design of Squeeze Film Supports for Flexible Rotors,' Trans. ASME Journal of Engineering for Power, Vol. 105, pp.487-494 https://doi.org/10.1115/1.3227441
  29. Rao, S. S., 1996, 'Engineering Optimization,' John Wiley & Sons, Inc
  30. Satio, S. and Kobayashi, M., 1982, 'On the Vibration of a Rotor Supported by Squeeze Film Damper,' Trans of the Japan Society of Mechanical Engineers, Series C, Vol. 48, No. 436, pp. 1883-1888 https://doi.org/10.1299/kikaic.48.1883
  31. Sato, T. and Hagiwara, M., 1998, 'Bee System: Finding Solution by a Concentrated Search,' Trans. IEE Japan, Vol. 118-C, No.5, pp.721-726
  32. Shiau, T. N., Hwang, J. L. and Chang, Y. B., 1993, 'A Study on Stability and Response Analysis of a Nonlinear Rotor System With Mass Unbalance and Side Load,' Trans. ASME Journal of Engineering for Gas Turbines and Power, Vol. 115, pp.218-226 https://doi.org/10.1115/1.2906697
  33. Taylor, D. L. and Kumar, B. R. K., 1980, 'Nonlinear Response of Short Squeeze Film Dampers,' Trans. ASME Journal of Lubrication Technology, Vol. 102, pp. 51-58 https://doi.org/10.1115/1.3251438
  34. Thomsen, K. K. and Andersen, H., 1974, 'Experimental Investigation of a Simple Squeeze Film Damper,' Trans. ASME Journal of Engineering for Industry, Vol. 96, No.2, pp.427-430 https://doi.org/10.1115/1.3438347
  35. Wu, Z., Shao, H. and Wu, X., 1999, 'A New Adaptive Genetic Algorithm and Its Applica-tion in Multimodal Function Optimization,' Control Theory and Applications, Vol. 16, No.1, pp.127-129
  36. Yakoub, R. Y. K. and EI-Shafei, A., 2001, 'The Nonlinear Response of Multimode Rotors Supported on Squeeze Film Dampers,' Trans. ASME Journal of Engineering for Gas Turbines and Power, Vol. 123, pp.839-848 https://doi.org/10.1115/1.1370974
  37. Zeidan, F. and Vance, J. M., 1990, Cavitation and Air entrainment effects on the Response of Squeeze-Film Supported Rotor,' Trans. ASME Journal of Tribology, Vol. 112, pp. 347-353 https://doi.org/10.1115/1.2920263
  38. Zhang, J., Xu, Q. and Zheng, T., 1998, 'Stability and Bifurcation of a Rotor-Fluid Film Bearing System with Squeeze Film Damper,' Trans. ASME Journal of Vibration and Acoustics, Vol. 120, pp. 1003-1006 https://doi.org/10.1115/1.2893907
  39. Zhao, J. Y., Linnett, I. W. and Mclean, L. J., 1994, 'Stability and Bifurcation of Unbalance Response of a Squeeze Film Damped Flexoble Rotor,' Trans. ASME Journal of Tribology, Vol. 116, pp. 361-368 https://doi.org/10.1115/1.2927236
  40. Zhu, C. S., Robb, D. A. and Ewins, D. J., 2002, 'Analysis of the Multiole-Solution Response of a Flexible Rotor Supported on Non-Linear Squeeze Film Damper,' Journal of Sound and Vibration, Vol. 252, No.3, pp. 389-408 https://doi.org/10.1006/jsvi.2001.3910