The Factors Controlling the Formation of Spring Population of Acartia hongi (Copepoda: Calanoida) in Incheon Coastal Water, Korea

인천 연안에서 요각류 Acartia hongi 춘계 개체군 형성의 영향 요인

  • Yoo J.K. (Environmental Engineering and Consultant Technology Institute) ;
  • Youn S.H. (East Fisheries Research Institute, NFRDI) ;
  • Choi J.K. (Department of Oceanography, Inha University)
  • 유정규 ((주) 이엔씨 기술연구소) ;
  • 윤석현 (국립수산과학원 동해수산연구소) ;
  • 최중기 (인하대학교 해양학과)
  • Published : 2006.08.01

Abstract

To investigate the factors controlling the spring population of Acartia hongi, egg production, hatching time of egg and predation pressure were measured. Egg production was maintained the superior position between winter and spring. Egg production was positively correlated with not only water temperature when water temperature was below $7^{\circ}C$ but also chlorophyll-a concentration when it was from $7^{\circ}C$ to $21^{\circ}C$. A regressive equation of development time$(D_e,\;day)$ of eggs derived from water temperature$(T,\;^{\circ}C)$ was obtained as $D_e=18.9(T-0.4)^{-1.0}$, showing longer development time at water temperature below $5^{\circ}C$. In Cross Correlation Analysis(CCA) to examine the time-lag relationship among abundances of developmental stages of A. hongi, egg production rate calculated by multiplying population egg production rate by hatching time showed more significant correlation with nauplii abundance than population egg production rate. Therefore, it suggests that hatching time is also recognized by a factor controlling formation of population and especially, in winter, high abundance of egg derived from high daily egg production rate and delayed hatch by low water temperature become the origin of initial spring population of nauplii. Egg predation by Noctiluca scintillans, suggesting a negative factor in formation of A. hongi spring population, was observed. During spring, A. hongi eggs were found in $2.9\sim21.1%$ of individuals of N. scintillans. It was deduced that $1.2\sim49.5%$ of the eggs produced by A. hongi was preyed on by N. scintillans. In conclusion, the factors controlling spring population of A. hongi were regarded as high egg production by winter generation, the delayed development time of egg by low temperature, and egg predation of N. scintillans.

본 연구에서 Acartia hongi 춘계 개체군 형성의 영향 요인을 파악하기 위해 알 생산, 알 부화시간, 알 포식에 관한 조사가 수행되었다. 알 생산은 동계부터 춘계 사이에 높은 수준을 유지하였다. 알 생산은 수온이 $7^{\circ}C$ 이하일 때 수온 증가에 따라 증가하였으며, 수온 $7\sim21^{\circ}C$ 사이에서는 클로로필 a 농도와 유의한 양의 상관관계를 나타냈다. 알부화 시간$(D_e,\;day)$은 수온$(T,\;^{\circ}C)$에 따라 다음과 같은 회귀식이 얻어졌다. $D_e=18.9(T-0.4)^{-1.0}$ 알 부화 시간은 수온 $5^{\circ}C$ 이하에서 급격히 길어지는 경향을 보였다. 시간차에 따른 A. hongi의 성장 단계별 현존량 변화의 상관관계를 보기 위해 교차상관분석(CCA)을 수행하였다. 개체군 알 생산율에 부화시간을 고려한 알 생산은 개체군 알 생산을 보다 노플리우스 현존량과 유의한 상관관계를 보였다. 이는 부화 시간도 개체군 형성에 영향 요인이 됨을 의미하며, 특히 동계에 높은 일간 알 생산율과 저수온에 대한 부화 지연으로 야기된 높은 알 현존량은 춘계 초기 노플리우스 개체군의 기원이 될 것으로 본다. 춘계 개체군 형성의 부정적인 요인으로 Noctiluca scintillans의 알 포식이 관찰되었다 N. scintillans전체 개체수의 $2.9\sim21.1%$에서 A. hongi 알이 관찰되었으며, 이는 A. hongi 개체군 알 생산율의 $1.2\sim49.5%$에 해당한다. 결론적으로 A. hongi춘계 개체군 형성에 영향 요인으로 동계 세대에 의한 지속적으로 높은 알 생산, 저수온에 따른 부화 지연 그리고 N. scintillans의 알 포식 등이 고려된다.

Keywords

References

  1. 강형구, 강용주, 1998. 한국 동해 남부 연안 일광만의 요각류 Acartia steueri의 알 생산력. 한국수산학회지, 31: 288-295
  2. 윤석현, 최중기, 2003. 경기만 동물플랑크톤 군집의 시공간적 분포. 한국해양학회지 바다, 8: 243-250
  3. Anderson, T. R. and D. O. Hessen, 1995. Carbon and nitrogen limitation in marine copepods? J. Plankton Res., 17: 317-331 https://doi.org/10.1093/plankt/17.2.317
  4. Belmonte, G. and M. Puce, 1994. Morphological aspects of subitaneous and resting egg from Acartia josephinae(Calanoida). Hydrobiologia, 292: 131-135
  5. Castro-Longoria, E. and J. A. Williams, 1999. The production of subitaneous and diapause eggs: a reproductive strategy for Acartia bifilosa (Copepoda: Calanoida) in Southampton water, UK. J. Plankton Res., 21: 65-84 https://doi.org/10.1093/plankt/21.1.65
  6. Chen, F. and N. H. Marcus, 1997. Subitaneous, diapause, and delayedhatching eggs of planktonic copepods from the northern Gulf of Mexico: morphology and hatching success. Mar. Biol., 127: 587-597 https://doi.org/10.1007/s002270050049
  7. Corkett, C. J. and I. A. McLaren, 1970. Relationships between development rate of eggs and older stages of copepods, J. Mar. Biol. Assoc. U.K., 50: 161-168 https://doi.org/10.1017/S0025315400000680
  8. Christou, E. D. and G. C. Verriopoulos, 1993. Analysis of the biological cycle of Acartia clausi (Copepoda) in a meso-oligotrophic coastal area of the eastern Mediterranean Sea using time-series analysis. Mar. Biol., 115: 643-651 https://doi.org/10.1007/BF00349372
  9. Davis, C. S., G. R. Flierl, P. H. Wiebe and P. J. S. Franks, 1991. Micropatchness, turbulence and recruitment in plankton. J. Mar. Res., 49: 109-151 https://doi.org/10.1357/002224091784968602
  10. Durbin, E. G., A. G. Durbin, T. J. Smayda and P. G. Verity, 1983. Food limitation of production by adult Acartia tonsa in Narragansett Bay, Rhode Island. Limnol. Oceanogr., 28: 1199-1213 https://doi.org/10.4319/lo.1983.28.6.1199
  11. Frost, B. W., 1985. Food limitation ofthe planktonic marine copepods Calanus pacificus and Pseudocalanus sp. in a temperate fjord. Arch. Hydrobiol. Beih. Ergebn. Limnol., 21: 1-13
  12. Grice, G. D. and N. H. Marcus, 1981. Dormant eggs of marine copepods. Oceanogr. Mar. Biol. Annu. Rev., 19: 125-140
  13. Halsband, C. and H. J. Hirche, 2001. Reproductive cycles of dominant calanoid copepods in the North Sea. Mar. Ecol. Prog. Ser., 209: 219-229 https://doi.org/10.3354/meps209219
  14. Hirche, H. J., 1992. Egg production of Eurytemora affinis effect of k-strategy. Estuar. Coast Shelf Sci., 35: 395-407
  15. Huntley, M. E. and M. D. Z. Lopez, 1992. Temperature dependent production of marine copepods: a global synthesis. Am. Nat., 140: 201-242 https://doi.org/10.1086/285410
  16. Ianora A. and I. Buttino, 1990. Seasonal cycles in population abundances and egg production rates in the planktonic copepods Centropages typicus and Acartia clausi. J. Plankton Res., 12: 473--481 https://doi.org/10.1093/plankt/12.3.473
  17. Jiang, X.,G. Wang and S. Li, 2004. Age, distribution and abundance of viable resting eggs of Acartia pacifica (Copepoda: Calanoida) in Xiamen Bay, China. J. Exp. Mar. Biol. Ecol., 312: 89-100 https://doi.org/10.1016/j.jembe.2004.06.004
  18. Jung, Y. H., H. G. Kang and Y. J. Kang, 2004. In situ egg production rate of the planktonic copepod Acartia steueri in Ilkwang Bay, Southeastern coast of Korea. J. Plankton Res., 26: 1547-553 https://doi.org/10.1093/plankt/fbh126
  19. Katajisto, T., 2003. Development of Acartia bifilosa (Copepoda: Calanoida) eggs in the northern Baltic Sea with special reference to dormancy. J. Plankton Res., 25; 357-364 https://doi.org/10.1093/plankt/25.4.357
  20. Katajisto, T., M. Viitasalo and M. Koski, 1998. Seasonal occurrence and hatching of calanoid eggs in sediments of the northern Baltic Sea. Mar. Ecol. Prog. Ser., 163; 133-143 https://doi.org/10.3354/meps163133
  21. Kimmerer, W. J. and A. D. Mckinnon, 1990. High mortality in a copepod opulation caused by a parasitic dinoflagellate. Mar. Biol., 107: 449-452 https://doi.org/10.1007/BF01313428
  22. Longhurst, A. R., 1985. The structure and evolution of plankton communities. Prog. Oceanogr., 15: 1-35 https://doi.org/10.1016/0079-6611(85)90036-9
  23. Marcus, N. H., 1996. Ecological and evolutionary significance ofresting eggs in marine copepods: past, present, and future studies. Hydrobiologia, 320: 141-152 https://doi.org/10.1007/BF00016815
  24. Marcus, N. H., R. Lutz, W. Burnett and P. Cable, 1994. Age, viability, and vertical distribution of zooplankton resting eggs from an anoxic basin: evidence of an egg bank. Limnol. Oceanogr., 39: 154-158 https://doi.org/10.4319/lo.1994.39.1.0154
  25. McLaren, I. A., 1978. Generation lengths of some temperate marine copepods: Estimation, predation, and implication. J. Fish. Res. Bd. Can., 35; 1330-1342 https://doi.org/10.1139/f78-208
  26. Miralto, A., A. Ianora, I. Buttino, G Romano, and M. D. Pinto, 2002 Egg production and hatching success in north Adriatic Sea populations of the copepod Acartia clausi. Chem. Ecol., 18: 117-125 https://doi.org/10.1080/02757540212683
  27. Mullin, M. M., 1991. Relative variability of reproduction and mortality in two pelagic copepod populations. J. Plankton Res., 13: 1381-1387 https://doi.org/10.1093/plankt/13.6.1381
  28. Naess, T.,1991. Marine calanoid resting eggs in Norway: abundance and distribution of two copepod species in the sediment of an enclosed marine basin. Mar. Biol; 110: 261-266 https://doi.org/10.1007/BF01313712
  29. Ohman, M. D., 1986. Predator-limited population growth of the copepod Pseudodiaptomus sp .. J. Plankton Res., 8: 673-713 https://doi.org/10.1093/plankt/8.4.673
  30. Pagano, M. and E. Kouassi, R. Arfi, M. Bouvy and L. Saint-Jean, 2004 In situ spawning rate of the calanoid copepod Acartia clausi in a trophic lagoontf'brie Cote d'lvoire): Diel variations and effects of environmental factors. Zool. Stud., 43: 244-254
  31. Park, C. and M. R. Landry, 1993. Egg production by subtropical copepod Uninula vulgaris. Mar. Biol., 117: 415-421
  32. Parsons, T. R., Y. Maita and C. M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press. Oxford, 173 pp
  33. Poulet, S. A.,A. lanora and M. Laabir, 1995. Towards the measurement of secondary production and recruitment in copepods. ICES J. Mar. Sci., 52: 359-368 https://doi.org/10.1016/1054-3139(95)80051-4
  34. Purcell, J. E., J. R. White and M. R. Roman, 1994. Predation by gelatinous zooplankton and resource limitation as potential controls of Acartia tonsa copepod populations in Chesapeake Bay. Limnol. Oceanogr., 39; 263-278 https://doi.org/10.4319/lo.1994.39.2.0263
  35. Quevedo, M., R. Gonzalez-Quiros and R. Anadon, 1999. Evidence of heavy predation by Noctiluca scintillans on Acartia clausi (Copepoda) eggs off the central Cantabrian coast (NW Spain). Oceanol. Acta. 22: 127-131 https://doi.org/10.1016/S0399-1784(99)80039-5
  36. Raymont, J. E. G., 1983. Plankton and productivity in the oceans. Vol II. Zooplankton. Pergamon Press, Oxford, 824 pp
  37. Runge, J. A., 1988. Should we expect a relationship between primary production and fisheries? The role of copepod dynamics as a filter of trophic variability. Hydrobiologia, 167/168: 67-71
  38. Sekiguchi, H. and T. Kato, 1976. Influence of Noctiluca's predation on the Acartia population in Ise Bay, Central Japan. J. Oceanogr. Soc. Jpn. 32: 195-198 https://doi.org/10.1007/BF02107121
  39. Soh, H. Y and H. G. Jeong, 2003. Spatio-temporal distribution of the Genus Acartia (Copepoda: Calanoida) in the Southwestern Waters of Korea. Korean J. Environ. Biol., 21: 422-427
  40. Sullivan, B. K. and L. T. McManus, 1986. Factors controlling seasonal succession of the copepods Acartia hudsonica and A. tonsa in Narragansett Bay, Rhode Island: temperature and resting egg production. Mar. Ecol. Prog. Ser., 28: 121-128 https://doi.org/10.3354/meps028121
  41. Tepper, B. and B. P. Bradley, 1989. Temporal changes in a natural population of copepods. Biol. Bull., Woods Hole, 176: 32-40 https://doi.org/10.2307/1541886
  42. Uye, S., 1980. Development of neritic copepods Acartia clausi and A. steueri. I. Some environmental factors affecting egg development and the nature of resting eggs. Bull. Plankton Soc. Jpn, 27: 1-9
  43. Uye, S., 1982. Population dynamics and production of Acartia clausi Giesbrecht (Copepoda: Calanoida) in inlet waters. J. Exp. Mar. Ecol., 57: 55-83 https://doi.org/10.1016/0022-0981(82)90144-7
  44. Uye, S., 1985. Resting egg production as a life history strategy of marine planktonic copepods. Bull. Mar. Sci., 37: 440-449
  45. Uye, S., S. Kasahara and T. Onbe, 1979. Calanoid copepod eggs in sea-bottom muds. IV. Effects of some environmental factors on the hatching of resting eggs. Mar. Biol., 51: 151-156 https://doi.org/10.1007/BF00555194
  46. Viitasalo, M., 1992. Calanoid resting eggs in the Baltic Sea: implications for the population dynamics of Acartia bifilosa (Copepoda). Mar. Biol., 114: 397-405 https://doi.org/10.1007/BF00350030
  47. Viitasalo, M. and T. Katajisto, 1994. Mesozooplankton resting eggs in the Baltic Sea: Identification and vertical distribution in laminated and mixed sediments. Mar. Biol., 120: 455-465 https://doi.org/10.1007/BF00680221
  48. Watson, N. H. F. and B. N. Smallman, 1971. The role of photoperiod and temperature in the induction and termination of an arrested development in two species of freshwater cyclopid copepods. Can. J. Zool., 49: 855-862 https://doi.org/10.1139/z71-128
  49. Yoo, J. K., 2001. A study on fluctuating egg abundance and egg production of Acartia hongi (Copepoda: Acartiidae) in Inchon , coastal water. Ms. Thesis, Inha Univ., 61 pp
  50. Yoon, S. H., 2004. Spatial and temporal distribution of zooplankton copepod Acartia hongi in Kyeonggi Bay, Korea. Ph.D. Thesis, Inha Univ., 306 pp
  51. Zhong, X. F. and Y.C. Xiao, 1992. Resting eggs of Acartia bifilosa Giesbrecht and A. pacifica Steuer in Jiaozhou Bay. Mar. Sci. (Qingdao), 5: 55-59