Location of Acoustic Emission Sources in a PSC Beam using Least Squares

최소제곱법에 의한 PSC보의 음향방출파원 위치결정

  • 이창노 (서울산업대학교 공과대학 토목공학과)
  • Published : 2006.08.01

Abstract

Acoustic Emission (AE) technology is an effective nondestructive testing for continuous monitoring of defect formation and failures in structural materials. This paper presents a source location model using Acoustic Emission (AE) sensors in a Pre-Stressed Concrete (PSC) beam and the evaluation of the model was performed through lab experiments. 54 AE events were made on the surface of the 5m-PSC beam using a Schmidt Hammer and arrival times were measured with 7AE sensors. The source location f3r each event was estimated using least squares. The results were compared with actual positions and the RMSE (Root Mean Square Errors) was about 2cm.

음향방출(AE: Acoustic Emission) 기법은 구조물 내부에서 발생하는 균열을 연속적으로 모니터링 할 수 있는 효과적인 비파괴검사법이다. 본 논문에서는 AE센서을 이용하여 PSC 보에서의 파원위치를 결정하기 위한 수학적 모델을 제시하고 실험을 통해 제시된 모델을 평가하였다. 실험을 위해 제작된 5m-PSC보의 표면에서 인위적으로 쉬미트해머의 타격에 의해 탄성파를 발생시켰으며 1m 간격으로 선형으로 배치된 7개의 AE센서에 의해 탄성파의 도달시간이 측정되었다. 최소제곱법에 의해 측정된 도달시간의 잔차의 제곱합이 최소가 되도록 파원의 위치를 구한 후, 실제 타격위치와 비교하여 추정된 위치결정방법의 정확도를 평가하였다. 54개의 타격실험을 통해 얻어진 파원위치의 평균제곱근 오차는 약 2cm 이었다.

Keywords

References

  1. 권오양 (2001), 음향탐상(AE)기술의 현황과 활용방안, 안전기술지, http://home.kosha.net/~ndeteam/data/data13.hwp
  2. Cullington, D. W., MacNeil, D., Paulson, P. and Elliot, J. (2001) Continuous acoustic monitoring of grouted post-tensioned concrete bridges, NDT&E International, Vol. 34, pp. 95-105 https://doi.org/10.1016/S0963-8695(00)00034-7
  3. Halsall, A. P., Welch, W. E. and Trepanier, S. M. (1996), Acoustic monitoring technology for post-tensioned concrete structures, FIP Symposium 1996 on Post-tensioned Concrete Structures, The Concrete Society, pp. 483-491
  4. Landis, E. N. and Shah, S. P. (1993), Signal analysis for quantitative AE testing, Nondestructive Testing from Structures Congress '93, Irvine, Calif, pp. 45-56
  5. Mathy, B., Demars, P., Roisin, F. and Wouters, M. (1996), Investigation and strengthening study of twenty damaged bridges:a Belgiurn case history, Bridge Management: Inspection Maintenance and Repair, Proceedings of the 3rd International Conference, University of Surrey, pp. 658-666
  6. Meng, M., Roberts, G. W., Dodson, A. H., Cosser, E., Barnes, J. and Rizos, C. (2004), Impact of GPS satellite and pseudolite geometry on structural deformation monitoring: analytical and empirical studies, Journal of Geodesy, Vol. 77, pp. 809-822 https://doi.org/10.1007/s00190-003-0357-y
  7. Mikhail, E. M. (1976), Observations and least squares, University Press of America, New York, NY, pp. 110-118
  8. Mikhail, E. M., Bethel, J. S. and McGlone, J. C. (2001), Introduction to modern photogrammetry, John Wiley & Sons Inc., New York, pp. 414-422
  9. Roberts, G. W., Meng, X. and Dodson, A. H. (2004), Integrating a Global Positioning System and Accelerometers to Monitor the Deflection of Bridges, ASCE Journal of Surveying Engineering, Vol. 130, No.2, pp. 65-72 https://doi.org/10.1061/(ASCE)0733-9453(2004)130:2(65)
  10. The Concrete Society (1996), Durable bonded post-tensioned concrete bridges, Concrete Society Technical Report 47, TR047
  11. Woodward, R. J. and Williams, F. W. (1988), Collapse of Ynys-s-Gwas bridge, West Glamorgan, Proceedings of Institute oj Civil Engineers, Part 1, Vol. 84, pp. 635-669
  12. Youn, Seck-Goo, Cho, Sun-Kyu and Kim, Eun-Kyum (2005), Acoustic emission technique for detection of corrosion-induced wire fracture, Key Engineering Materials, Vol. 297-300, pp. 2040-2045 https://doi.org/10.4028/www.scientific.net/KEM.297-300.2040