Photo-Alignment Mechanism Study of Poly(siloxane cinnamate)

폴리(실록산 신나메이트)의 광배향 메커니즘 연구

  • Choi Ji-Won (Materials Research Center for Information Display Department of Chemical Engineering, Kyung Hee University) ;
  • Lim Ji-Chul (Materials Research Center for Information Display Department of Chemical Engineering, Kyung Hee University) ;
  • Song Ki-Gook (Materials Research Center for Information Display Department of Chemical Engineering, Kyung Hee University)
  • 최지원 (경희대학교 환경응용화학대학 영상정보소재기술연구센터) ;
  • 임지철 (경희대학교 환경응용화학대학 영상정보소재기술연구센터) ;
  • 송기국 (경희대학교 환경응용화학대학 영상정보소재기술연구센터)
  • Published : 2006.09.01

Abstract

Photo -alignment of poly (siloxane cinnamate) (PSCN) was studied to better understand the alignment mechanism of cynnamoyl groups under various process conditions. DSC and polarized microscope studies showed that the isotropic temperature oi PSCN was about $105^{\circ}C$ and the liquid crystallinity, once formed, did not completely disappear even when the temperature went into the isotropic regions. UV/Vis absorption study suggested that the photo - dimerization was the main photo alignment mechanism and it's efficiency could be enhanced through the self-alignment of PSCN. It was also found that photo-dimerization was in competition with photo-fries reaction and the photo- alignment of PSCN was interfered with the excessive UV because of the strong photo-fries reaction. However, photo - fries reaction could be suppressed by adjusting the UV wavelength.

신나모일 그룹의 광배향 메커니즘과 공정 조건들과의 관계를 이해하기 위하여 폴리(실록산 신나메이트) (PSCN)를 이용한 광배향 연구를 진행하였다. DSC와 편광현미경 실험에서 PSCN의 등방성 온도는 $105^{\circ}C$ 이상이었으며 액정 온도 구간에서 한 번 배열된 분자들은 저온이나 고온의 등방성 온도 구간에서도 없어지지 않는 열안정성을 보였다. UV/Vis 흡수 실험을 통해서는 광이량화 반응이 주된 광배향 반응이며 신나모일기가 스스로 배열되는 경향이 강하여 광이량화 반응의 효율을 높이는데 기여하지만 광조사가 지나칠 경우 경쟁 관계에 있는 photo-fries 반응이 증가하여 오히려 광배향 성질이 떨어짐을 알 수 있었다. 한편, photo-fries 반응은 UV의 파장을 조절하여 억제할 수 있었다.

Keywords

References

  1. Y. B. Kim, H. Olin, S. Y. Park, J. W. Choi, L. Komitov, and S. T. Lagerwall, Appl. Phys. Lett., 66, 2218 (1995) https://doi.org/10.1063/1.113172
  2. A. J. Pidduck, G. P.Bryan-Brown, S. D. Haslam, R. Bannister, and I. Kitely, J. Vac. Sci. Tech., A14, 1723 (1996)
  3. S. H. Paek, C. J. Duming, K. W. Lee, and A. Lien, J. Appl. Phys., 83, 1270 (1998) https://doi.org/10.1063/1.366825
  4. K. C. Kim, H. J. Ahn, J. B. Kim, B. H. Hwang, and H. K. Baik, Langmuir, 21, 11079 (2005) https://doi.org/10.1021/la050839y
  5. K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K, Aoki, Langmuir, 4, 1214 (1988) https://doi.org/10.1021/la00083a030
  6. N. Kishida and S. Kikui, Appl. Phys. Lett., 40, 541 (1982) https://doi.org/10.1063/1.93136
  7. K. Ichimura, Chem. Rev., 100, 1847 (2000) https://doi.org/10.1021/cr980079e
  8. C. Kim, A. Trajkovska, J. U. Wallace, and S. H. Chen, Macromolecules, 39, 3817 (2006) https://doi.org/10.1021/ma060269o
  9. M. W. Kim and A. Rastegar, J. Appl. Phys., 90, 3332 (2001) https://doi.org/10.1063/1.1383580
  10. R. M. Tejedor, L. Oriol, M. Pinol, J. L. Serrano, V. Strehmel, B. Stiller, and J. Stumpe, J. Polym. Sci.; Part A, 43, 4907 (2005) https://doi.org/10.1002/pola.20956
  11. M. J. Whitcombe, An Grilbert, and G. R. Mitchell, Polymer, 34, 1347 (1993) https://doi.org/10.1016/0032-3861(93)90844-Z
  12. I. Assaid, D. Bose, and I. Hardy, J. Phys. Chem. B, 108, 2801 (2004) https://doi.org/10.1021/jp0306996
  13. K. Ichimura, Y. Akita, H. Akiyama, K. Kudo, and Y. Hayashi, Macromolecules, 30, 911 (1997)
  14. B. Chae, W. W. Lee, M. Ree, Y. M. Jung, and S. B. Kim, Langmuir, 19, 687 (2003) https://doi.org/10.1021/la020453c
  15. C. Ruslim, M. Hashimoto, D. Matsunaga, T, Tamaki, and K. Ichimura, Langmuir, 20, 95 (2004) https://doi.org/10.1021/la035366e
  16. C. C. Jung, R. Rosenhauer, M. Rutloh, C. Kempe, and J. Stumpe, Macromolecules, 38, 4324 (2005) https://doi.org/10.1021/ma0476846
  17. S, Furumi, M. Kidowaki, M. Ogawa, Y. Nishiura, and K. Ichimura, J. Phys. Chem. B, 109, 9245 (2005) https://doi.org/10.1021/jp050106m
  18. M. Hasegawa and Y. Taira, J. Photopolymer Sci. Tech., 8, 241 (1995) https://doi.org/10.2494/photopolymer.8.241
  19. M. Nishikawa, B. Taheri, and J. L. West, SID'98 Digest, 131 (1998)
  20. O. Yaroshchuk, G. Pelzl, G. Pirwitz, Y. Reznikov, H. Zhschke, J. Kim, and S. B. K won, Jpn. J. Appl. Phys., 36, 5693 (1997) https://doi.org/10.1143/JJAP.36.5693
  21. J. Lui, X. Liang, and H. Gao, Jpn. J. Appl. Phys., 39, 1221 (2000) https://doi.org/10.1143/JJAP.39.1221
  22. H. Gu, P. Xie, P. Fu, T. Zhang, and R. Zhang, Adv. Funct. Mater., 15, 125 (2005) https://doi.org/10.1002/adfm.200400158
  23. P. Keller, Chem. Mater., 2, 3 (1990) https://doi.org/10.1021/cm00007a001
  24. J. Lui, X. Liang, H. Tang, S. Xu, and H. Gao, Thin Solid Films, 384, 212 (2001) https://doi.org/10.1016/S0040-6090(00)01877-0
  25. R. Sinsermsuksakul and S. Bualek, J. Mol. Struct., 348, 175 (1995) https://doi.org/10.1016/0022-2860(95)08617-5
  26. B. Lee, S. Ham, J. Chul, and K. Song, Polymer(Korea), 21, 1059 (1997)
  27. R. W. Data, A. H. Fawcett, T. Geue, J. Haferkorn, R. K. Malcolm, and J. Stumpe, Macromolecules, 31, 4935 (1998) https://doi.org/10.1021/ma971827p
  28. J. Stempe, Ch. Selbmann, and D. Kreysig, J. Photochem. Photobiol. A. Chem., 58, 15 (1991) https://doi.org/10.1016/1010-6030(91)87095-D