Pitch Variations in Cholesteric Liquid Crystal Film by Molecular Diffusion

분자 확산에 의한 콜레스테릭 액정 필름의 피치 변화

  • Kwon Young-Jin (Materials Research Center for Information Display, Kyung Hee University) ;
  • Lee Won-Ju (Materials Research Center for Information Display, Kyung Hee University) ;
  • Kim Beom-Kyung (Materials Research Center for Information Display, Kyung Hee University) ;
  • Kim In-Sun (I-components) ;
  • Song Ki-Gook (Materials Research Center for Information Display, Kyung Hee University)
  • 권영진 (경희대학교 영상정보소재기술 연구센터) ;
  • 이원주 (경희대학교 영상정보소재기술 연구센터) ;
  • 김범경 (경희대학교 영상정보소재기술 연구센터) ;
  • 김인선 (아이컴포넌트) ;
  • 송기국 (경희대학교 영상정보소재기술 연구센터)
  • Published : 2006.09.01

Abstract

Due to their periodic helical structure, cholesteric liquid crystals (CLC) have a unique ability to selectively reflect visible light. CLC films reflecting a broad wavelength band were prepared by inducing a pitch gradient in CLC layers through a diffusion of small molecules and through a thermal mixing of cyclic siloxane CLC molecules with different pitch lengths. Various pitch gradients in the CLC cell were observed using UV/Vis spectrometer and SEM technique.

콜레스테릭 액정은 주기적인 나선구조 때문에 빛을 선택적으로 반사하는 특성을 보이는데, 반사파장 대역이 넓은 cholesteric liquid crystal(CLC) 필름을 서로 다른 피치를 가지는 두 cyclic siloxane CLC의 열확산이나 저분자 물질에 의한 확산을 이용하여 제조하였다. 확산에 의한 CLC 액정 셀 내에 형성된 다양한 CLC 피치 분포를 SEM으로 관찰하였고, UV/Vis spectrometer를 이용하여 CLC 피치 분포 변화를 조사하였다.

Keywords

References

  1. D. J. Broer, J. Lub, and G. N. Mol, Nature, 378, 467 (1995) https://doi.org/10.1038/378467a0
  2. F. H. Kreuzer, D. Andrejewski, W. Haas, N. Haberle, and P. Spes, Mol. Cryst. Liq. Cryst., 199, 345 (1991) https://doi.org/10.1080/00268949108030945
  3. S. V. Belayen, M. Schadt, M. I. Barnik, and K. Schmitt, Jap. J. Appl. Phys., 29, 634 (1990) https://doi.org/10.1143/JJAP.29.L634
  4. P. Palffy-Muhoray, Nature, 391, 745 (1998) https://doi.org/10.1038/35753
  5. M. L. Tsai and S. H. Chen, Macromol., 23, 1908 (1990) https://doi.org/10.1021/ma00209a003
  6. L. Li, and M. Faris, SPIE, 2873, 202 (1996)
  7. M. Mitov, A. Boudet, and P. Sopena, Eur. Phys. J. B, 8, 327 (1999) https://doi.org/10.1007/s100510050696
  8. T. J. Bunning, and P. T. Mather, Liq. Cryst., 26, 557 (1999) https://doi.org/10.1080/026782999205001
  9. C. Binet, M. Mitov, and A. Bouet, Mol. Cryst. Liq. Cryst., 339, 111 (2000) https://doi.org/10.1080/10587250008031036
  10. L. Li and S. M. Faris, SID 96 Digest, 111 (1996)
  11. P. J. Shannon, Macromol., 17, 1873 (1984) https://doi.org/10.1021/ma00139a043
  12. D. J. Broer, Mol. Cryst. Liq. Cryst., 261, 513 (1995) https://doi.org/10.1080/10587259508033494
  13. Y. J. Kwon, W. J. Lee, S. H. Paek, I. Kim, and K. Song, Mol. Cryst. Liq. Cryst., 377, 325 (2002) https://doi.org/10.1080/10587250211665
  14. R. Hikmet and H. Kemperman, Nature, 392, 476 (1998) https://doi.org/10.1038/33110
  15. C. Binet and M. Mitov, J. Appl. Phys., 90, 1730 (2001) https://doi.org/10.1063/1.1388172
  16. F. H. Kreuzer and G. W. Gawhary, U. S. Pat 4410,570 (1983)
  17. H. Park, B. Kim, W. Kim, I. Kim, and K. Song, Polymer (Korea), 30, 182 (2006)
  18. S. J. Clarson, K. Dodgson, and J. A. Semlyen, Polymer, 26, 930 (1985) https://doi.org/10.1016/0032-3861(85)90140-5