DOI QR코드

DOI QR Code

안정판과 불안정판에서 자세 균형 조절에 대한 진동자극의 영향

Effects of Vibratory Stimulus on Postural Balance Control during Standing on a Stable and an Unstable Support

  • 유미 (전북대학교 대학원 의용생체공학과) ;
  • 은혜인 (전북대학교 대학원 헬스케어공학과) ;
  • 김동욱 (전북대학교 공과대학 바이오메디컬공학부) ;
  • 권대규 (전북대학교 공과대학 바이오메디컬공학부) ;
  • 김남균 (전북대학교 공과대학 바이오메디컬공학부)
  • Yu, Mi (Dept. of Biomedical Engineering, Graduate School, Chonbuk National Univ.) ;
  • Eun, Hey-In (Dept. of Healthcare Engineering, Graduate School, Chonbuk National Univ.) ;
  • Kim, Dong-Wook (Division of Biomedical Engineering, College of Engineering, Chonbuk National Univ.) ;
  • Kwon, Tae-Kyu (Division of Biomedical Engineering, College of Engineering, Chonbuk National Univ.) ;
  • Kim, Nam-Gyun (Division of Biomedical Engineering, College of Engineering, Chonbuk National Univ.)
  • 발행 : 2007.10.31

초록

The purpose of this study was to analyze the effects of vibratory stimulus as somatosensory inputs on the postural control in human standing. To study these effects, the center of pressure(COP) was observed while subjects were standing on a stable and an unstable support with co-stimulated mechanical vibrations to flexor ankle muscles(tibialis anterior tendon, achilles tendon) and two plantar zones on both foot. The COP sway measurement was repeated twice in four conditions: (1) with visual cue and vibration, (2) without visual cue and vibration, (3) with visual cue and without vibration, (4) without visual cue and with vibration. The calculated parameters were the COP sway area and the distance, the median frequency and the spectral energy of COP sway in three intervals $0.1{\sim}0.3,\;0.3{\sim}1,\;1{\sim}3Hz$. The results showed that vibratory stimulus affect postural stability. The reduction rate of the COP sway with vibratory stimulus were higher on the unstable support because the effect of postural stability increases when afferent nervous flow is more activated by vibration on unstable support. If unclear visual or vibratory information is received, one type of information is compared with the other type of sensory information. Then the input balance between visual and vibratory information is corrected to maintain postural stability. These findings are important for the rehabilitation system of postural balance control and the use of vibratory information.

키워드

참고문헌

  1. F. B. Horak, and J. M. Macpherson, Postural Orientation and Equilibrium. In Handbook of Physiology, section 1, Exercise: Regulation and Integration of Multiple Systems, New York: Oxford University Press, 1996, pp. 255-292
  2. D. H. Jeong, and H. C. Kwom, 'A study on control of posture and balance,' The Journal of Korean Society of Physical Therapy, vol. 11, no. 3, pp. 23-36, 1999
  3. T. Mergner, and T. Rosemeier, 'Interaction of vestibular, somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions: a conceptual model,' Brain Research Review, vol. 28, no. 4, pp. 118-135, 1998 https://doi.org/10.1016/S0165-0173(98)00032-0
  4. E. B. Goldstein, Sensation & Perception, Six edition, Belmont: Wadsworth Publishing Company, 2001, pp. 455-491
  5. S. C. Gandevia, Kinesthesia: roles for afferent signals and motor commands. In: Handbook of Physiology. Exercise. Regulation and Integration of Multiple Systems, Bethesda, MD: Am. Physiol. Soc., sect, 1996, pp. 128-172
  6. F. Hlavacka, T. Mergner, and M. Krizkova, 'Control of the body vertical by vestibular and proprioceptive inputs,' Brain Research Bulletin, vol. 40, no. 5, pp. 431-434, 1996 https://doi.org/10.1016/0361-9230(96)00138-4
  7. D. C. Gravelle, C. A. Laughton, N. T. Dhruv, K. D. Datdare, J. B. Niemi, L. A. Lipsitz and J. J. Collins, 'Noise-enhanced balance control in older adults,' Neuroreport, vol. 13, no. 15, pp. 1853-1856, 2002 https://doi.org/10.1097/00001756-200210280-00004
  8. R. Dickstein, Y. Laufer and M. Katz, 'TENS to the posterior aspect of the legs decreases postural sway during stance,' Neuroscience letters, vol. 393, pp. 51-55. 2006 https://doi.org/10.1016/j.neulet.2005.09.039
  9. C. Mauter, T. Mergner, B. Bolha and F. Hlavacka, 'Human balance control during cutaneous stimulation of the plantar soles,' Neuroscience letters, vol. 302, pp. 45-48, 2001 https://doi.org/10.1016/S0304-3940(01)01655-X
  10. H. Lekhel, K. E. Popov, D. Anastasopoulos, A. Bronstein, K. Bhatia, C. D. Marsden, and M. Gresty, 'Postural responses to vibration of neck muscles in patients with idiopathic Torticollis,' Brain, vol. 119, no. 4, pp. 101-109, 1997 https://doi.org/10.1093/brain/119.1.101
  11. Y. P. Ivanenko, R. Grasso, and F. Lacquaniti, 'Neck muscle vibration makes walking humans accelerate in the direction of gaze,' Journal of Physiology, vol. 525, no. 3, pp. 803-814, 2000 https://doi.org/10.1111/j.1469-7793.2000.t01-1-00803.x
  12. A. Priplata, J. Niemi, M. Salen, J. Harry, L. A. Lipsitz, and J. J. Collins, 'Noise-Enhanced Human Balance Control,' Physical Review Letters, vol. 89, no. 23, pp. 1-4, 2002
  13. Y. P. Ivanenko, I. A. Solopova, and Y.S. Levik, 'The direction of postural instability affects postural reactions to ankle muscle vibration in humans,' Neuroscience Letters, vol. 292, pp.103-106, 2000 https://doi.org/10.1016/S0304-3940(00)01438-5
  14. J. J. Collins, A. A. Priplata, D. C. Gravelle, J. Niemi, J. Harry, and L. A. Lipsitz, 'Noise-enhanced human sensorimotor function,' IEEE Engineering in Medicine and Biology Magazine, vol. 22, pp. 76-83, 2003 https://doi.org/10.1109/MEMB.2003.1195700
  15. R. P. Tien, G. J. Felsberg, and J. Macfall, 'Fast spin-echo high-resolution MR imaging of the inner ear,' AJR Am. J. Roentrgenal, vol. 159, no. 2, pp. 395-398, 1992 https://doi.org/10.2214/ajr.159.2.1632364
  16. L. Rocchi, L. Chiari, and A. Cappello, 'Feature selection of stabilometric parameters based on principal component analysis,' Medical & Biological Engineering & Computing, vol. 42, no. 1, pp. 71-79, 2004 https://doi.org/10.1007/BF02351013
  17. E. Nagy, K. Toth, G. Janositz, G. Kovasc, A. Feher-Kiss, L. Angyan, and G. Horvath, 'Postural control in athletes participating in an ironman triathlon,' Eur. J. Appl. Physiol., vol. 92, pp. 407-413, 2004
  18. E. Golomer, J. Cremieux, P. Dupui, B. Isableu, and T. Ohlmann, 'Visual contribution to self-induced body sway frequencies and visual perception of male professional dancers,' Neurosci. Lett., vol. 267, no. 4, pp. 189-292, 1999 https://doi.org/10.1016/S0304-3940(99)00356-0
  19. J. D. Harry, J. B. Niemi, A. A, Priplata, and J. J. Collins, 'Balancing act,' IEEE Spectrum, April, pp. 36-41, 2005
  20. S. Verschueren, S. P. Swinnen, K. Desloovere, and J. Duysens, 'Vibration-induced changes in EMG during human locomotion,' J. Neurophysiol., vol. 89, pp. 1299-1307, 2003 https://doi.org/10.1152/jn.00863.2002
  21. V. S. Gurfinkel, T. B. Kireeva, and Y. S. Levik, 'Effect of postural muscle vibration on equilibrium maintenance in the frontal plane at various levels of stability,' Human Physiology, vol. 22, no. 2, pp. 83-92, 1996
  22. Y. P. Ivanenko, V. L. Talis, and O. V. Kazennikov, 'Support stability influences postural responses to muscle vibration in humans,' Eur. J. Neurosci., vol. 11, no. 2, pp. 647-654, 1999 https://doi.org/10.1046/j.1460-9568.1999.00471.x
  23. B. E. Maki, and W. E. Mcllroy, 'The role of limb movements in maintaining upright stance: the 'change-in-support' strategy,' Phys. Ther., vol. 77, no. 5, pp. 488-507, 1997 https://doi.org/10.1093/ptj/77.5.488
  24. R. Wolfson, J. Judge, R. Whipple, and M. King, 'Strength is a major factor in balance, gait and the occurrence of falls,' J. Gerontol. A. Biol. Sci. Med. Sci., vol. 50, pp. 64-67, 2005
  25. K. E. Yarasheski, 'Exercise, aging and muscle protein metabolism,' J. Gerontol, vol. 58A, no. 10, pp. 918-922, 2003
  26. Y. P. Ivanenko, R. Grasso, and F. Lacquaniti, 'Influence of Leg Muscle Vibration on Human Walking,' J. Neurophysiol., vol. 84, no. 4, pp. 1737-1747, 2000 https://doi.org/10.1152/jn.2000.84.4.1737
  27. A. Kavounoudias, J. C. Gilhodes, R. Roll, and J. P. Roll, 'From balance regulation to body orientation: two goals for muscle proprioceptive information processing?,' Exp. Brain Res., vol. 124, no. 1, pp. 80-88, 1999 https://doi.org/10.1007/s002210050602
  28. E. R. Kandel, J. H. Schwartz and T. M. Jessell, Principles of neural science 4th ed., New York: McGraw-Hill, 2000, pp. 101-103
  29. M. Dozza, F. B. Horak and L. Chiari, 'Auditory biofeedback substitutes for loss of sensory information in maintaining stance,' Exp. Brain Res., vol. 178, no. 1, pp.37-48, 2007 https://doi.org/10.1007/s00221-006-0709-y
  30. K. Brooke-Wavell, L. K. Perret, P. A. Howarth, and R. A. Haslam, 'Influence of the visual environment on the postural stability in healthy older women,' Gerontology, vol. 48, no. 5, pp. 293-297, 2002 https://doi.org/10.1159/000065252
  31. K. Pirjo, Body Movements during Postural Stabilization Measurements with a Motion Analysis System, Dissertation, Department of physical medicine and rehabilitation, University Hospital of Oulu, 2002, pp. 50-53
  32. A. Shymway-Cook and M. H. Woollacott, Motor Control: Theory and Parctical Applications, Lippincott Williams & Wilkins Inc., 2001, pp.152-158
  33. P. Dizio, J. R. Lackner, and E. Rabin, 'Sensorimotor and environmental conditions constraining use of the hand as a guide for posture,' Multisensory Control of Posture and Gait, 13th International Symposium, Paris, June, 1997, pp. 22-26
  34. J. Massion, 'Postural control systems in developmental perspective,' Neuroscience and Biobehavioral Reviews, vol. 22, no. 4, pp. 465-472, 1996 https://doi.org/10.1016/S0149-7634(97)00031-6