Adequate postural control depends on the spatial and temporal integration of vestibular, visual, and somatosensory information. Especially, the musculoskeletal function is essential to maintain the postural control. The experimental studies was performed on the muscular activities in the lower extremities during maintaining and moving exercises on an unstable platform with Magneto Rheological(MR) dampers. The unstable platform of the developed system was controlled by electric currents to the MR dampers. A subject executed the maintaining and moving exercises which are presented through the display monitor. The electromyographies of the eight muscles in lower extremities were recorded and analyzed in the time and the frequency domain: the muscles of interest were rectus femoris(RF), biceps femoris(BF), tensor fasciae latae(TFL), vastus lateralis(VL), vastus medialis(VM), gastrocnemius(Ga), tibialis anterior(TA), Soleus(So). The experimental results showed that the muscular activities differed in the four moving exercises and the nine maintaining exercises. For the anterior-posterior pattern, the TA showed highest activities; for the left-right pattern, the TFL; for the 45, $-45^{\circ}$ pattern, the TFL and TA. Also, the rate of the increase in the muscular activities were affected by the condition of the unstable platform with MR dampers for the maintaining and moving exercises. The experimental results suggest that the choice of different maintaining and moving exercises could selectively train different muscles in various intensity. Futhermore, the findings suggested that the training using this system can improve the ability of postural control.