The research on chromosomes is very significant in cytogenetics since genes of the chromosomes control revelation of the inheritance plasma. The human chromosome analysis is widely used to study leukemia, malignancy, radiation hazard, and mutagen dosimetry as well as various congenital anomalies such as Down's, Klinefelter's, Edward's, and Patau's syndrome. The framing and analysis of the chromosome karyogram, which requires specific cytogenetic knowledge is most important in this field. Many researches on automated chromosome karyotype analysis methods have been carried out, some of which produced commercial systems. However, there still remains much room to improve the accuracy of chromosome classification and to reduce the processing time in real clinic environments. In this paper, we proposed a hierarchical artificial neural network(HANN) to classify the chromosome karyotype. We extracted three or four chromosome morphological feature parameters such as centromeric index, relative length ratio, relative area ratio, and chromosome length by preprocessing from ten human chromosome images. The feature parameters of five human chromosome images were used to learn HANN and the rest of them were used to classify the chromosome images. The experiment results show that the chromosome classification error is reduced much more than that of the other researchers using less feature parameters.