DOI QR코드

DOI QR Code

APPROXIMATION OF CAUCHY ADDITIVE MAPPINGS

  • Roh, Jai-Ok (DEPARTMENT OF MATHEMATICS HALLYM UNIVERSITY) ;
  • Shin, Hui-Joung (DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY)
  • Published : 2007.11.30

Abstract

In this paper, we prove that a function satisfying the following inequality $${\parallel}f(x)+2f(y)+2f(z){\parallel}{\leq}{\parallel}2f(\frac{x}{2}+y+z){\parallel}+{\epsilon}({\parallel}x{\parallel}^r{\cdot}{\parallel}y{\parallel}^r{\cdot}{\parallel}z{\parallel}^r)$$ for all x, y, z ${\in}$ X and for $\epsilon{\geq}0$, is Cauchy additive. Moreover, we will investigate for the stability in Banach spaces.

Keywords

References

  1. Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434 https://doi.org/10.1155/S016117129100056X
  2. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224 https://doi.org/10.1073/pnas.27.4.222
  3. D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of functional equations in several vari- ables, Progress in Nonlinear Differential Equations and their Applications, 34. Birkhauser Boston, Inc., Boston, MA, 1998
  4. K. Jun and Y. Lee, A generalization of the Hyers-Ulam-Rassias stability of the Pexider- ized quadratic equations, J. Math. Anal. Appl. 297 (2004), no. 1, 70-86 https://doi.org/10.1016/j.jmaa.2004.04.009
  5. S. M. Jung, Hyers-Ulam-Rassias stability of functional equations in mathematical anal- ysis, Hadronic Press, Inc., Palm Harbor, FL, 2001
  6. C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. (N.S.) 36 (2005), no. 1, 79-97 https://doi.org/10.1007/s00574-005-0029-z
  7. C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras, Bull. Sci. Math. (to appear)
  8. C. Park, Y. Cho, and M. Han, Functional inequalities associated with Jordan-von Neumann-type additive functional equations, J. Inequal. Appl. (2007), 1-13 https://doi.org/10.1155/2007/41820
  9. J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), no. 1, 126-130 https://doi.org/10.1016/0022-1236(82)90048-9
  10. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300 https://doi.org/10.1090/S0002-9939-1978-0507327-1
  11. Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers- Ulam stability, Proc. Amer. Math. Soc. 114 (1992), no. 4, 989-993 https://doi.org/10.1090/S0002-9939-1992-1059634-1
  12. S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8 Interscience Publishers, New York-London 1960

Cited by

  1. Functional Inequalities Associated with Additive Mappings vol.2008, 2008, https://doi.org/10.1155/2008/136592
  2. CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM vol.47, pp.1, 2010, https://doi.org/10.4134/BKMS.2010.47.1.001
  3. A Fixed Point Approach to the Fuzzy Stability of an Additive-Quadratic-Cubic Functional Equation vol.2009, pp.1, 2009, https://doi.org/10.1155/2009/918785
  4. APPROXIMATE BI-HOMOMORPHISMS AND BI-DERIVATIONS IN C*-TERNARY ALGEBRAS vol.47, pp.1, 2010, https://doi.org/10.4134/BKMS.2010.47.1.195