Palladium 촉매를 이용한 Oligo(3-methylthiothiophene)의 합성과 응용

Synthesis and Application of Oligo(3-Methylthiothiophene) Using Palladium Catalyst

  • 박상호 (성균관대학교 고분자공학과) ;
  • 정문영 (성균관대학교 고분자공학과) ;
  • 배진영 (성균관대학교 고분자공학과)
  • Park, Sang-Ho (Department of Polymer Science & Engineering, Sungkyunkwan University) ;
  • Jung, Moon-Young (Department of Polymer Science & Engineering, Sungkyunkwan University) ;
  • Bae, Jin-Young (Department of Polymer Science & Engineering, Sungkyunkwan University)
  • 발행 : 2007.11.30

초록

본 연구에서는 OTFT의 유기물 반도체 층으로 쓰일 수 있는 oligo(3-methylthiothiophene)를 전이금속 촉매인 palladium 촉매를 이용한 커플링 중합법을 이용하여 합성하였다. Thiophene 올리고머의 단량체를 합성하기 위해서 metal halogen exchange reaction에 의하여 3-methylthiothiophene를 합성하였고, thiophene 구조의 2, 5번의 위치에 brome기를 도입함으로써 최종적으로 2,5-dibromo-3-methylthiothiophene를 합성하였다. 합성된 단량체와 올리고머는 $^1H-NMR$, ATR 분석을 통하여 그 구조를 확인하였으며, TGA로 열적 안정성을 관찰하였고 진공 증착법(thermal evaporation)을 이용하여 기판상에 증착시켜 OTFT 소재로서의 적용 가능성을 확인하였다.

In this study, oligo(3-methylthiothiophene) was synthesized from thiophene derivative according to the method of reductive coupling using palladium catalyst. For the preparation of monomer, 3-methylthiothiophene was first synthesized through the metal-halogen exchange reaction of 3-bromothiophene with n-butyllithiuim, and the corresponding 2,5-dibromo-3-methylthiothiophene was formed by bromination. Their synthesis and characterization were determined by $^1H-NMR$ and ATR analyses. Thermal stability of the oligothiophene was monitored by thermogravimetric analysis (TGA). Thermal evaporation of the oligo(3-methylthiothiophene) on the substrate was attempted for OTFT applications.

키워드

참고문헌

  1. A. G MacDiarmid, C. K. Chiang, C. R. Findher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, and S. C. Gau, Phys. Rev. Lett., 39, 1098 (1977)
  2. K. Kudo, M. Yamashina, and T. Moriizumi, Jpn. J. Appl. Phys., 23, 130 (1984) https://doi.org/10.1143/JJAP.23.984
  3. F. Ebisawa, T. Kurokawa, and S. Nara, J. Appl. Phys., 54, 2355 (1983)
  4. A. Tsumura, H. Koezuka, and T. Ando, Appl. Phys. Lett., 49, 1210 (1986)
  5. A. Tsumura, H. Koezuka, and T. Ando, Synth. Met., 18, 699 (1987)
  6. J. Paloheimo, H. Stubb, P. Yli-Lahti, and P. Kuivalainen, Synth. Met., 41, 563 (1991)
  7. Z. Bao, A. Dodabalapur, and A. J. Lovinger, Appl. Phys. Lett., 69, 4108 (1996) https://doi.org/10.1063/1.117107
  8. X. Wu, T. -A. Chen, and R. D. Rieke, Marcromolecules, 29, 7671 (1996)
  9. X. Wu, T.-A. Chen, L. Zhu, and R. D. Rieke, Tetrahedron Lett., 35, 3673 (1994)
  10. E. C. Taylor and D. E. Vogel, J. Org. Chem., 50, 1002 (1985)
  11. X. Wu, T. - A. Chen, and R. D. Rieke, Macromolecules, 28, 2101 (1995)
  12. T.-S. Lee, J. H. Kim, and J.-Y. Bae, Polymer, 45, 5065 (2004) https://doi.org/10.1016/j.polymer.2004.05.051
  13. O. Milton, Materials Science of Thin Films, 2nd edition, Academic Press, San Diego, California, ch. 7 (2001)