DOI QR코드

DOI QR Code

Effects of Laminaria Japonica Extract Supplement on Blood Glucose, Serum Lipids and Antioxidant Systems in Type ll Diabetic Patients

다시마추출물이 제2형 당뇨병 환자의 혈당, 지질 및 항산화 체계에 미치는 영향

  • Park, Min-Jung (Dept. of Food Science and Nutrition, Pusan National University) ;
  • Ryu, Ho-Kyung (Dept. of Food Science and Nutrition, Pusan National University) ;
  • Han, Ji-Sook (Dept. of Food Science and Nutrition, Pusan National University)
  • Published : 2007.11.30

Abstract

We performed a randomized double-blind placebo-controlled trial to determine whether Laminaria japonica extract (LJE) supplement modulates blood glucose, serum lipids and antioxidant systems in type II diabetic patients. We also measured critical parameters assessing safety in liver and kidney functions after LJE supplement. A total of 37 patients (18 males and 19 females) were randomized to either LJE group or placebo group. The treatment group received four 350 mg of LJE capsules (1.4 g, total) per day for 12 weeks. The placebo group received the same dose of cellulose capsules. Baseline characteristics regarding general life style and dietary intake pattern were similar between the two groups. There were no significant influences of LJE supplement except for waist circumference on anthropometric parameters. As the whole, 12 weeks of LJE supplement resulted in a little decrease in fasting blood glucose (FBG) and glycated hemoglobin (HbA1c), but a significant decrease was not observed. Total cholesterol, LDL-cholesterol and triglyceride concentrations were significantly (p<0.05) lowered in LJE group. The antioxidant enzymes, glutathion peroxidase (GSH-px) and superoxide dismutase (SOD) levels were elevated in the LJE group (p<0.05) compared to the placebo. The increase of these enzymes was associated significantly with the decrease of MDA concentration (p<0.05). Furthermore, LJE supplement showed no adverse effects on the functions of liver and kidney. Findings from this study suggest that LJE supplement can help improve serum lipid status in type II diabetic subjects without adverse effects.

본 연구는 다시마의 활성성분을 열수추출하고, 그 추출물을 제 2형 당뇨병 환자에게 섭취시킴으로서 그들의 혈당, 혈중지질 및 항산화 체계 개선에 있어서 다시마추출물의 효능을 과학적으로 규명하고자 하였다. 다시마를 열수추출하고 동결건조한 후 캡슐화하여 1.4 g을 350 mg씩 4캡슐로 나누어, 아침과 저녁 식후에 2캡슐씩 제 2형 당뇨환자에게 12주간 섭취 시켰다. 위약군은 동량의 cellulose를 실험군과 동일하게 제조한 후 같은 방법으로 섭취하게 하였고 이중맹검법을 사용하였다. 섭취 전후 일반사항 및 식이섭취조사, 신체계측을 실시하였고, 혈액을 채취하여 혈당, 당화혈색소, 혈청지질, 지질과산화물 및 항산화 효소의 변화와 독성검사인 간 및 신장 기능의 변화를 측정하였다. 최종 연구는 총 37명으로 실험군 17명, 대조군 20명으로 양군간의 baseline 특성은 유의적 차이가 없었다. 다시마추출물 섭취군에서 공복혈당은 12주간 섭취 후 $156.0{\pm}15.2mg/dL$에서 $155.8{\pm}14.2mg/dL$로 나타났고, 당화혈색소 역시 $6.74{\pm}0.66%$에서 $6.65{\pm}0.64%$으로 유의적으로 감소하지 않았다. 다시마추출물의 섭취가 12주간 이루어지면서 총콜레스테롤은 $177.0{\pm}16.5mg/dL$에서 $168.6{\pm}15.0mg/dL$로 유의적 (p<0.05)으로 감소한 반면에, 위약군의 경우 $175.8{\pm}17.4mg/dL$에서 $179.8{\pm}19.9$로 변화되었다. 또한 다시마추출물 섭취군의 LDL-콜레스테롤, 중성지방의 변화에서도 섭취 전에 비해 섭취 후 유의적 (p<0.05) 감소를 나타내었으며, 특히 LDL-콜레스테롤의 농도를 고농도군, 정상군, 저농도군으로 분류시 LDL-콜레스테롤 농도가 높은 환자일수록 감소의 폭이 큼을 알 수 있었다. 지질과산물 농도의 변화를 보면 다시마추출물 섭취군은 $1.58{\pm}0.88nmol$에서 $1.13{\pm}0.03nmol$로 유의적(p<0.05)으로 감소되었고, GSH-px활성도 위약군에 비해 다시마추출물 섭취군은 $13.98{\pm}0.66I.U/mg$ protein에서 $14.58{\pm}0.22I.U/mg$ protein로 활성도가 약간 상승하였다. SOD 활성은 실험군($1.18{\pm}0.22$ vs. $1.28{\pm}0.18unit/mg$ protein)에서 유의적(p<0.05)으로 증가하였으며, 간 및 신장 기능 검사에서도 실험 전후 모든 군이 정상범위를 나타내었다. 따라서 본 연구는 당뇨병 환자들의 혈청지질 및 혈액 항산화 효소계에 도움을 줄 수 있는 안전한 보조제로서 다시마추출물의 사용 가능성을 제시하였다.

Keywords

References

  1. Kim EH, Vuksan V, Wong E. 1996. The relationship between viscosity of soluble dietary fiber and their hypoglycemic effects. Kor J Nutr 29: 615-621
  2. Lee KS, Lee SR. 1996. Retarding effect of dietary fibers on the glucose and bile acid movement across a dialysis membrane in vitro. Kor J Nutr 29: 738-746
  3. Lee HS, Choi MS, Lee YK, Park SH, Kim YJ. 1996. A study on the development of high-fiber supplementation on the gastrointestinal function and diabetic symptom control in streptozotocin-induced diabetic rats. Kor J Nutr 29:286-295
  4. Desille M, Allain N, Anger JP, Mahler S, Lognoné V, Mallédant Y, Clément B. 2003. Method for the monitoring alginate released in biological fluids by high-performance anion-exchange chromatography with pulsed amperometric detection. J Chromatogr B 784: 265-274 https://doi.org/10.1016/S1570-0232(02)00801-2
  5. Lahaye M. 1991. Marine algae as sources of fibers: determination of soluble and insoluble DF contents in some sea vegetables. J Sci Food Agric 54: 587-594 https://doi.org/10.1002/jsfa.2740540410
  6. Nishizawa M, Kuda T, Yamagishi T, Tsuji K. 1997. Effect of depolymerised sodium alginate on the excretion of cholesterol from rats. J Home Econ Jpn 48: 689-693
  7. Kimura Y, Watanbe K, Okuda H. 1996. Effect of soluble sodium alginate on cholesterol excretion and glucose tolerance in rats. J Ethnopharmacol 54: 47-54 https://doi.org/10.1016/0378-8741(96)01449-3
  8. Kuda T, Goto H, Yokoyama M, Fujii T. 1998a. Effects of dietary concentration of laminaran and depolymerised alginate on rat cecal microflora and plasma lipids. Fisheries Sci 64: 589-593 https://doi.org/10.2331/fishsci.64.589
  9. Kim YY, Lee KW, Kim GB, Cho YJ. 2000. Studies on pysicochemical and biological properties of depolymerized alginate from sea tangle, Laminaria japonica by thermal decomposition. J Kor Fish Soc 33: 393-398
  10. Choi JH, Kim DW. 1997. Effect of alginic acid-added functional drink (Haejomiin) in brown algae (Undria pinnatifida) on obesity and biological activity of SD rats. Korean J Life Science 7: 361-370
  11. Oishi K. 1993. Science of seaweeds. Asakurasyoten, Tokyo. p 201
  12. Hidaka H, Eida T, Takizawa T, Tokuzawa T, Tashiro Y. 1986. Effect of fructooligosaccharide on intestinal flora and human health. Bifidobacteria Microflora 5: 37-50 https://doi.org/10.12938/bifidus1982.5.1_37
  13. Kuda T, Fujii Saheki T, Hasegawa A, Okuzumi K. 1992. Effects of brown algae on faecal of rats. Nippon Nogeikagaku Kaishi 58: 307-314
  14. Choi JH, Chio JS, Byun DS, Yang DS. 1986. Basic studies in the development of diet for the treatment of obesity. II. Comparison of the inhibitory effect of algae and crude drug components on obesity. Bull Kor Fish Soc 19: 485-492
  15. Rhu BH, Kim DS, Cho KJ, Sim DB. 1989. Antitumor activity of seaweeds toward Sarcoma-180. Kor J Food Sci Technol 21: 595-600
  16. Haroun-Bouhedja F, Ellouali M, Sinquin C, Boisson-Vodal C. 2000. Relationship between sulfate groups and biological activities of fucans. Thrombosis Res 100: 453-459 https://doi.org/10.1016/S0049-3848(00)00338-8
  17. Colliec S, Fischer AM, Tapon-Bretaudiere H, Boisson C, Durand P, Jozefonvicz J. 1991. Anticoagulant of a fucoidan fracton. Thrombosis Res 64: 143-147 https://doi.org/10.1016/0049-3848(91)90114-C
  18. Nishino T, Yokoyama G, Dobashi K, Fujihara M, Nagumo T. 1989. Isolation, purficaton and characterization of fructose- containing sulfated polysaccharides from the brown seaweed Ecklonia jurome and their blood-anticoagulant activities. Carbohydrate Res 186: 119-129 https://doi.org/10.1016/0008-6215(89)84010-8
  19. Nishino T, Aizu Y, Nagumo T. 1991. The relation between the molecular weight and the anticoagulant of fucan sulfates from the brown seaweed Ecklonia kurome. Agric Biol Chem 55: 791-797 https://doi.org/10.1271/bbb1961.55.791
  20. Usui T, Asari K, Mizuno T. 1980. Isolation of highly fucoidan from Eisenia bicyclis and its antitumot activity. Agric Biol Chem 44: 1965-1970 https://doi.org/10.1271/bbb1961.44.1965
  21. Nishino T, Aizu Y, Nagumo T. 1991. The relationship between the molecular weight and the anticoagulant activity of two types of fucan sufates from the brown seaweed Ecklonia kurom. Agric Biol Chem 55: 791-797 https://doi.org/10.1271/bbb1961.55.791
  22. Goldberg RR. 1981. Lipid disorders in diabetes. Diabetes Care 4: 561-572 https://doi.org/10.2337/diacare.4.5.561
  23. Reaben KM. 1987. Abnormal lipoprotein metabolism in noninsulin-dependent diabetes mellitus. Am J Med 83: 31-40
  24. West KM, Ahuja MMS, Bennet PH, Czyzyk A, De Acosta OM, Fuller JH, Grab B, Grabauskas V, Jarrett RJ, Kosaka K, 1983. The role of cirulating glucose and triglyceride concentration and their interaction with other risk factors as determinations arterial disease in nine diabetic population samples from the WHO multinational study. Diabetes Care 6: 361-369 https://doi.org/10.2337/diacare.6.4.361
  25. Adeghate E, Parvez SH. 2000. Nitric oxide and neuronal and pancreatic beta cell death. Toxicology 153(1-3): 143-156 https://doi.org/10.1016/S0300-483X(00)00310-3
  26. Layout DR, Kaneto H, Hasenkamp W, Grey S, Jonas JC, Sgroi DC, Groff A, Ferran C, Binner-Weir S, Sherma A, Weir GC. 2002. Increased expression of antioxidant and antiapoptotic genes in islets that may contribute to [beta]-cell survival during chronic hyperglycemia. Diabetes 51: 413-423 https://doi.org/10.2337/diabetes.51.2.413
  27. Cho YJ, Bang MA. 2004. Hypoglycemic and antioxidative effects of dietary sea-tangle extracts supplementation in streptozotocin-induced diabetic rats. Korean J Nutrition 37: 5-14
  28. Jang MA, Lee KS, Seo JS, Choi YS. 2002. Effects of dietary supplementation of sea tangle extracts on the excretion of neutral steroids and bile acid in diabetic rats. J Korean Soc Food Sci Nutr 31: 819-825 https://doi.org/10.3746/jkfn.2002.31.5.819
  29. Korea Food Research Institute. 2000. Study on Development of Processed Foods Using Seaweeds. Ministry of Maritime Affairs & Fisheries
  30. Kim JY. 1997. Analysis of the iodine content in common Korean foods and an assessment of the iodine status of Koreans. PhD Dissertation. Yonsei University
  31. Taussky HH. 1954. A microcolorimetric determination of creatine in urine by the Jaffe reaction. J Biol Chem 208: 853-861
  32. Kabasakalian P, Kalliney S, Westcott A. 1973. Determination of uric acid in serum, with use of uricase and a tribromophenol- aminoantipyrine chromogen. Clin Chem 19: 522-524
  33. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  34. Paglia DE, Valentine WN. 1967. Studied on the quantitative and qualitative characterization of erythrocyte glutathion peroxide. J Lab & Clun Meal 70: 158-169
  35. Deagen JT, Bulter JA, Belisten MA, Wharyer PD. 1987. Effect of dietary selenite, selenocysteine and selenomethionine on selenocylene lyase and glutathion peroxidase activities and on selenium level tissue in rat tissue. J Nutr 117: 91-98 https://doi.org/10.1093/jn/117.1.91
  36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin-phenol reagant. J Biol Chem 193: 265-275
  37. Yagi K. 1994. Lipid peroxides and related radicals in clinical medicine. Adv Exp Med Biol 366: 1-15 https://doi.org/10.1007/978-1-4615-1833-4_1
  38. Mo SM, Lee YS, Goo JO, Son SM, Seo JS, Youn EY, Lee SK, Kim WK. 2002. Diet therapy. 2nd ed. Kyomunsa, Seoul. p 327
  39. Kimura M, Chen F, Nakashima N, Kimura I, Asano N, Koya S. 1995. Antihyperglycemic effects of N-containing sugars derived from mulberry leaves in streptozotocin induced diabetic mice. J Traditional Medicine 12: 214-219
  40. Chen FJ, Nakashima N, Kimura I, Kimura M. 1995. Hypoglycemic activity and mechanism of extracts from mulberry leaves (Folium mori) and cortex mori radices in streptozotocin induced diabetic mice. Takugaku Zasshi 115: 476-482 https://doi.org/10.1248/yakushi1947.115.6_476
  41. Committee for establishment of hyperlipidemia therapy guide. 2003. Guideline for hyperlipidemia therapy. 2nd ed. Seoul
  42. Vijan S, Hayward RA. 2004. Pharmacologic lipid-lowering therapy in type 2 diabetes mellitus: Backgroud paper for the American college of physicians. Ann Intern Med 140: 650-658 https://doi.org/10.7326/0003-4819-140-8-200404200-00013
  43. Meigs JB, Singer DE, Sullivan LM, Dukes KA, D'Agostino RB, Nathan DM, Wagner EH, Kaplan SH, Greenfield S. 1997. Metabolic control and prevalent cardiovascular disease in non-insulin dependnt diabetes mellitus (NIDDM): The NIDDM Patients Outcome Research Team. Am J Med 102: 38-47 https://doi.org/10.1016/S0002-9343(96)00383-X
  44. Celik S, Baydas G, Yilmaz O. 2002. Influence of vitamin E on the levels of fatty acids and MDA in some tissues of diabetic rats. Cell Biochem Funct 20: 67-71 https://doi.org/10.1002/cbf.936
  45. Ha AW, Kim HM. 1999. The study of lipid-peroxidation, antioxidant enzymes, and the antioxidant vitamins in NIDDM patients with microvascular-diabetic complications. Korean J Nutrition 32: 17-23
  46. Kim HS, Lee JH, Park EJ, Yoon JY, Kim JM, Lim HS, Lee HC, Huh KB. 1994. Effect of enteral nutrition supplementation on glucose metabolism in patients with NIDDM. Korean J Nutrition 27: 805-815
  47. Dhatt GS, Griffin G, Agarwal MM. 2006. Thyroid hormone reference intervals in an ambulatory Arab population on the Abbott Architect i2000 immunoassay analyzer. Clin Chim Acta 364: 226-229 https://doi.org/10.1016/j.cccn.2005.07.003

Cited by

  1. Protective Effect of Sasa borealis Leaf Extract on AAPH-Induced Oxidative Stress in LLC-PK1 Cells vol.16, pp.1, 2011, https://doi.org/10.3746/jfn.2011.16.1.012
  2. Evaluation of 8-week body weight control program including sea tangle (Laminaria japonica) supplementation in Korean female college students vol.3, pp.4, 2009, https://doi.org/10.4162/nrp.2009.3.4.307
  3. Effect of Enzyme-Treated Radish Leaves on Lipid Metabolism in Rats Fed a High-Fat Diet vol.16, pp.1, 2011, https://doi.org/10.3746/jfn.2011.16.1.001
  4. Characteristics and in vitro Anti-diabetic Properties of the Korean Rice Wine, Makgeolli Fermented with Laminaria japonica vol.19, pp.2, 2014, https://doi.org/10.3746/pnf.2014.19.2.098
  5. Polysaccharides from Laminaria japonica show hypoglycemic and hypolipidemic activities in mice with experimentally induced diabetes vol.239, pp.12, 2014, https://doi.org/10.1177/1535370214537751
  6. Anti-Diabetic Effect of Red Ginseng-Chungkukjang with Green Laver or Sea Tangle vol.15, pp.3, 2010, https://doi.org/10.3746/jfn.2010.15.3.176
  7. Effect of various sources of dietary additive on growth, body composition and serum chemistry of juvenile olive flounder (Paralichthys olivaceus) vol.46, pp.9, 2015, https://doi.org/10.1111/are.12388