Fatigue Life Prediction of Automotive Rubber Component Subjected to a Variable Amplitude Loading

가변진폭하중에서의 자동차 고무 부품의 피로 수명 예측

  • Kim, Wan-Soo (Department of Mechanical Engineering, Chungnam National University) ;
  • Kim, Wan-Doo (Department of Future Technology, Korea Institute of Machinery and Materials) ;
  • Hong, Sung-In (Department of Mechanical Engineering, Chungnam National University)
  • 김완수 (충남대학교 기계공학과 대학원) ;
  • 김완두 (한국기계연구원 미래기술연구부) ;
  • 홍성인 (충남대학교 기계공학과)
  • Published : 2007.12.31

Abstract

Fatigue life prediction methodology of the rubber component made of vulcanized natural rubber under variable amplitude loadings was studied. The displacement-controlled fatigue tests were conducted at different levels and the maximum Green-Lagrange strain was selected as damage parameters. A fatigue life curve of the rubber represented by the maximum Green-Lagrange strain was determined from the nonlinear finite element analysis. The transmission load history of SAE as variable amplitude loading was used to perform the fatigue life prediction. And then a signal processing of variable loading by racetrack and simplified rainflow cycle counting methods were performed. The modified miner's rule as cumulative damage summation was used. Finally, when the gate value is 30%, the predicted fatigue life of the rubber component agreed well with the experimental fatigue lives with a factor of two.

가변진폭 하중에서 고무부품의 피로수명 예측방법에 대하여 연구하였다. 서로 다른 변위에서 변위제어 피로시험을 수행하였으며 피로손상변수로 최대 Green-Lagrange 변형률을 선정하였다. Green-Lagrange 변형률에 의한 고무의 피로수명 곡선은 3차원 덤벨시편의 비선형 유한요소법을 이용하여 결정하였다. 피로수명 예측을 위하여 가변진폭 하중이력으로 SAE의 하중이력을 이용하였다. 레이스트랙법과 단순화된 레인플로집계법을 이용하여 하중이력신호를 축약하였다. 누적손상피로를 계산하는 방법으로 수정Miner 법칙을 이용하였으며, 최종적으로 하중이력신호에서 최대 진폭의 30% 이하를 노이즈로 간주하여 예측하였을 경우의 피로수명은 실제 가변진폭 하중 하에서의 피로시험결과와 비교적 잘 일치하였다.

Keywords

References

  1. A. N. Gent, 'Engineering with Rubber,' Hanser Gardner, 2001
  2. W. V. Mars and A. Fatemi., 'A Literature Survey on Fatigue Analysis Aapproaches for Rubber,' International Journal of Fatigue, 24, 949 (2002) https://doi.org/10.1016/S0142-1123(02)00008-7
  3. W. D. Kim, C. S. Woo, and S. W. Han, 'Finite Element Analysis and Fatigue Life Evaluation of Automotive Rubber Insulator,' Elastomer, 33, 168 (1998)
  4. H. Hirakawa, F. Urano, and M. Kida, 'Analysis of Fatigue Process of Rubber Vulcanizates,' Rubber Chemistry and Technology, 51, 201 (1978) https://doi.org/10.5254/1.3545829
  5. K. H. Morman and T. Y. Pan, 'Application of Finite‐Element Analysis in the Design of Automotive Elastomeric Components,'Rubber Chemistry and Technology, 61, 503 (1988) https://doi.org/10.5254/1.3536198
  6. W. D. Kim, 'Application of FEA to Design of Rubber Component,'Transactions of Korean Society of Mechanical Engineers, 38, 42 (1998)
  7. L. Mullins, 'Softening of Rubber by Deformation,' Rubber Chemistry and Technology, 42, 339 (1969) https://doi.org/10.5254/1.3539210
  8. R. W. Ogden, 'Large Deformation Isotropic Elasticity-On the Correlation of Theory and Experiment for Incompressible Rubber‐like Solids,' Proc. Royal Soc. London, 326, 565 (1972)
  9. A. K. Mal and S. J. Singh, Deformation of Elastic Solids, Prentice Hall, Englewood Cliffs, 1991
  10. J. A. Bannantine, J. J. Comer, and J. L. Handrock, 'Fundametals of Metal Fatigue Analysis' Prentice Hall, Englewood Cliffs, p. 178, 1990