DOI QR코드

DOI QR Code

Grain-Boundary Conduction in Solid Oxide Electrolyte

산화물 고체전해질의 입계전도

  • Lee, Jong-Heun (Department of Materials Science and Engineering, Korea University)
  • Published : 2007.12.31

Abstract

Grain-boundary conduction in the fluorite-structure solid oxide electrolytes such as acceptor-doped zirconia and ceria were reviewed. The siliceous impurity, even several hundreds ppm, affects the ionic conduction across grain boundary to a great extent. Various approaches to improve grain-boundary conduction in fluorite-structure oxide electrolytes have been investigated, which include (1) the scavenging of siliceous phase by the reaction with second phase, (2) the gathering of intergranular siliceous phase into a discrete configuration and (3) the dewetting of intergranular liquid phase by post-sintering heat treatment.

Keywords

References

  1. B. C. H. Steele, 'Material Science and Engineering: The Enabling Technology for the Commercialization of Fuel Cell Systems,' J. Mater. Sci., 36 1053-68 (2001) https://doi.org/10.1023/A:1004853019349
  2. J. -H. Lee, 'Review on Zirconia Air-Fuel Ratio Sensors for Automotive Applications,' J. Mater. Sci., 38 4247-57 (2003) https://doi.org/10.1023/A:1026366628297
  3. J. A. Kilner, 'Fast Anion Transport in Solids,' Solid State Ionics, 8 201-07 (1983) https://doi.org/10.1016/0167-2738(83)90017-6
  4. J. E. Bauerle, 'Study of Solid Electrolyte Polarization by a Complex Admittance Method,' J. Phys. Chem. Solids, 30 2657-69 (1969) https://doi.org/10.1016/0022-3697(69)90039-0
  5. X. Guo, 'Physical Origin of the Intrinsic Grain-Boundary Resistivity of Stabilized-Zirconia: Role of the Space-Charge Layers,' Solid State Ionics, 81 235-42 (1995) https://doi.org/10.1016/0167-2738(95)00180-E
  6. X. Guo and R. Waser, 'Electrical Properties of the Grain Boundaries of Oxygen Ion Conductors: Acceptor-Doped Zirconia and Ceria,' Prog. Mater. Sci., 51 151-210 (2006) https://doi.org/10.1016/j.pmatsci.2005.07.001
  7. N. M. Beekmans and L. Heyne, 'Corelation between Impedance, Microstructure and Composition of Calcia-Stabilized Zirconia,' Electrochemica Acta, 21 303-10 (1976) https://doi.org/10.1016/0013-4686(76)80024-2
  8. S. P. S. Badwal, F. T. Ciacchi, S. Rajendran, and J. Drennan, 'An Investigation of Conductivity, Microstructure and Stability of Electrolyte Compositions in the System 9 mol% $(Sc_2O_3-Y_2O_3)-ZrO_2(Al_2O_3)$,' Solid State Ionics, 109 167-86 (1998) https://doi.org/10.1016/S0167-2738(98)00079-4
  9. M. Aoki, Y. -M. Chiang, I. Kosacki, J. -R. Lee, H. Tuller, and Y. Liu, 'Solute Segregation and Grain-Boundary Impedance in High-Purity Stabilized Zirconia,' J. Am. Ceram. Soc., 79 1169-80 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08569.x
  10. B. C. H. Steele, 'Appraisal of $Ce_{1-y}Gd_yO_{2-y/2}$ Electrolytes for IT-SOFC Operation at $500^{\circ}C$,' Solid State Ionics, 129 95-110 (2000) https://doi.org/10.1016/S0167-2738(99)00319-7
  11. W. Puin, S. Rodewald, R. Ramlau, P. Heitjans, and J. Maier, 'Local and overall ionic conductivity in nanoscrystalline $CaF_2$,' Solid State Ionics, 131 159-64 (2000) https://doi.org/10.1016/S0167-2738(00)00630-5
  12. M. J. Verkerk, A. J. A. Winnubst, and A. J. Burggraaf, 'Effect of Impurities on Sintering and Conductivity of Yttria-Stabilized Zirconia,' J. Mater. Sci., 17 3113-22 (1982) https://doi.org/10.1007/BF01203473
  13. K. C. Radford and R. J. Bratton, 'Zirconia Electrolyte Cells, Part 2 Electrical Properties,' J. Mater. Sci., 14 66-69 (1979) https://doi.org/10.1007/BF01028329
  14. M. Gödickemier, B. Michel, A. Orliukas, P. Bohac, K. Sasaki, L. Gauckler, H. Henrich, P. Schwander, G. Kostorz, H. Hofmann, and O. Frei, 'Effect of Intergranular Glass Films on the Electrical Conductivity of 3Y-TZP,' J. Mater. Res., 9 1228-40 (1994) https://doi.org/10.1557/JMR.1994.1228
  15. J. -H. Lee, T. Mori, J. -G. Li, T. Ikegami, M. Komatsu, and H. Haneda, 'Imaging Secondary-Ion Mass Spectroscopy Observation of the Scavenging of Siliceous Film from 8-mol%-Yttria-Stabilized Zirconia by the Addition of Alumina,' J. Am. Ceram. Soc., 83 1273-75 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01366.x
  16. S. Rajendran, J. Drennan, S. P. S. Badwal, 'Effect of Alumina Additions on the Grain Boundary and Volume Resistivity of Tetragonal Zirconia Polycrystals,' J. Mater. Sci. Lett., 6 1431-34 (1987) https://doi.org/10.1007/BF01689312
  17. A. J. Feighery and J. T. S. Irvine, 'Effect of Alumina Additions upon Electrical Properties of 8 mol.% Yttria-Stabilised Zirconia,' Solid State Ionics, 121 209-16 (1999) https://doi.org/10.1016/S0167-2738(99)00015-6
  18. M. Filal, C. Petot, M. Mokchah, C. Chateau, and J. L. Carpentier, 'Ionic Conductivity of Yttrium-Doped Zirconia and the 'composite effect',' Solid State Ionics, 80 27-35 (1995) https://doi.org/10.1016/0167-2738(95)00137-U
  19. X. Guo, C. -Q. Tang, and R. -Z. Yuan, 'Grain Boundary Ionic Conduction in Zirconia-Based Solid Electrolyte with Alumina Addition,' J. Euro. Ceram. Soc., 15 25-32 (1995) https://doi.org/10.1016/0955-2219(95)91296-Z
  20. E. P. Butler and J. Drennan, 'Microstructural Analysis of Sintered High-Conductivity Zirconia with $Al_2O_3$ Additions,' J. Am. Ceram. Soc., 65 474-78 (1982) https://doi.org/10.1111/j.1151-2916.1982.tb10336.x
  21. M. Miyayama, H. Yanagida, and A. Asada, 'Effects of $Al_2O_3$ Additions on Resistivity and Micrestructure of Yttria-Stabilized Zirconia,' Am. Ceram. Soc. Bull., 65 660-64 (1986)
  22. A. Yuzaki and A. Kishimoto, 'Effects of Alumina Dispersion on Ionic Conduction of Toughened Zirconia Base Composite,' Solid State Ionics, 116 47-51 (1999) https://doi.org/10.1016/S0167-2738(98)00264-1
  23. X. Guo, 'Roles of Alumina in Zirconia for Functional Applications,' J. Am. Ceram. Soc., 86 1867-73 (2003) https://doi.org/10.1111/j.1151-2916.2003.tb03574.x
  24. J. -H. Lee, T. Mori, J.-G. Li, T. Ikegami, and S. Takenouchi, 'The Influence of Alumina Addition and Its Distribution upon Grain-Boundary Conduction in 15 mol.% Calcia-Stabilized Zirconia,' Ceram. Int., 27 269-76 (2001) https://doi.org/10.1016/S0272-8842(00)00075-4
  25. J. -H. Lee, T. Mori, J. -G. Li, T. Ikegami, M. Komatsu, and H. Haneda, 'The Influence of Alumina Distributions upon Scavenging Highly Resistive Grain-Boundary Phase of 8 mol% Yttria-Stabilized Zirconia,' Electrochemistry, 68 [6] 427-32 (2000)
  26. W. C. Mackrodt and P. M. Woodrow, 'Theoretical Estimates of Point Defect Energies in Cubic Zirconia,' J. Am. Ceram. Soc., 69 [3] 277-80 (1986) https://doi.org/10.1111/j.1151-2916.1986.tb07426.x
  27. J. -H. Lee, T. Mori, J. -G. Li, T. Ikegami, M. Komatsu, and H. Haneda, 'Improvement of Grain-boundary Conductivity of 8 mol% Yttria-Stabilized Zirconia by Precursor Scavenging of Siliceous Phase,' J. Electrochem. Soc., 147 [7] 2822-29 (2000) https://doi.org/10.1149/1.1393612
  28. Y. Kanno, 'Thermodynamic and Crystallographic Discussion of the Formation and Dissociation of Zircon,' J. Mater. Sci., 24 2415-20 (1989) https://doi.org/10.1007/BF01174504
  29. T. Mori, H. Yamamura, K. Kobayashi, and T. Mitamura, 'Formation Mechanism of $ZrSiO_4$ Powders,' J. Mater. Sci., 28 4970-73 (1993) https://doi.org/10.1007/BF00361163
  30. G. Vilmin, S. Komarneni, and R. Roy, 'Lowering Crystallization Temperature of Zircon by Nanoheterogeneous Sol-Gel Processing,' J. Mater. Sci., 22 3556-60 (1987) https://doi.org/10.1007/BF01161458
  31. Y. Shi, X. Huang, and D. Yan, 'Preparation and Characterization of Highly Pure Fine Zircon Powder,' J. Euro. Ceram. Soc., 13 113-19 (1994) https://doi.org/10.1016/0955-2219(94)90108-2
  32. J. -H. Lee, T. Mori, J. -G. Li, T. Ikegami, J. Drennan, and D. -Y. Kim, 'Precursor Scavenging of Resistive Grain-Boundary Phase in 8 mol% Ytterbia-Stabilized Zirconia,' J. Electrochem. Soc., 149 [3] J35-J40 (2002) https://doi.org/10.1149/1.1446873
  33. J. -H. Lee, T. Mori, J. -G. Li, T. Ikegami, J. Drennan, and D. -Y. Kim, 'Precursor Scavenging of Resistive Grain-Boundary Phase in 8 mol% Yttria-Stabilized Zirconia: The Effect of Trace Concentrations of $SiO_2$,' J. Mater. Res., 16 [8] 2377-83 (2001) https://doi.org/10.1557/JMR.2001.0326
  34. J. -H. Lee, J. -H. Lee, Y. -S. Jung, and D. -Y. Kim, 'Effect of $Al_2O_3$ Addition on the Distribution of Intergranular Liquid-Phase During Sintering of 15 mol% Calcia-Stabilized Zirconia,' J. Am. Ceram. Soc., 86 [9] 1518-21 (2003) https://doi.org/10.1111/j.1151-2916.2003.tb03507.x
  35. J. -H. Lee, J. H. Lee, and D. -Y. Kim, 'The Inhomogeneity of Grain-Boundary Resistivity in Calcia-Stabilized Zirconia,' J. Am. Ceram. Soc., 85 [6] 1622-24 (2002) https://doi.org/10.1111/j.1151-2916.2002.tb00324.x
  36. Y. -S. Jung, J. -H. Lee, J. H. Lee, and D.-Y. Kim, 'The Improvement of Grain-Boundary Conduction in 15 mol% Calcia-Stabilized Zirconia,' J. Electrochem. Soc., 150 [10] J49-J53 (2003) https://doi.org/10.1149/1.1604117
  37. Y.-M. Chiang, 'Physical Ceramics,' p. 362, John Wiley, New York, 1997
  38. R. Gerhardt and A. S. Nowick, 'Grain-Boundary Effect in Ceria Doped with Trivalent Cations: I, Electrical Measurements,' J. Am. Ceram. Soc., 69 641-46 (1986) https://doi.org/10.1111/j.1151-2916.1986.tb07464.x
  39. R. Gerhardt, A. S. Nowick, M. E. Mochel, and I. Dumler, 'Grain-Boundary Effect in Ceria Doped with Trivalent Cations: II, Microstructure and Microanalysis,' J. Am. Ceram. Soc., 69 647-51 (1986) https://doi.org/10.1111/j.1151-2916.1986.tb07465.x
  40. T. S. Zhang, J. Ma, Y. J. Leng, S. H. Chan, P. Hing, and J. A. Kilner, 'Intermediate-Temperature Ionic Conductivity of Ceria-Based Solid Solutions as a Function of Gadolinia and Silica Contents,' Solid State Sci., 6 565-72 (2004) https://doi.org/10.1016/j.solidstatesciences.2004.03.013
  41. P. Jasinski, V. Petrovsky, T. Suzuki, and H. U. Anderson, 'Impedance Studies of Diffusion Phenomena and Ionic and Electronic Conductivity of Cerium Oxide,' J. Electrochem. Soc., 152 J27-J32 (2005) https://doi.org/10.1149/1.1861174
  42. J. A. Lane, J. L. Neff, and G. M. Christie, 'Mitigation of the Deleterious Effect of Silicon Species on the Conductivity of Ceria Electrolytes,' Solid State Ionics, 177 1911-15 (2006) https://doi.org/10.1016/j.ssi.2006.02.024
  43. P. -S. Cho, S. B. Lee, D. -S. Kim, J. -H. Lee, D. -Y. Kim, and H. -M. Park, 'Improvement of Grain-Boundary Conduction in Gadolinia-Doped Ceria by the Addition of CaO,' Electrochemical and Solid-State Letters, 9 [9] A399-A402 (2006) https://doi.org/10.1149/1.2214235
  44. D. K. Kim, P. -S. Cho, J. -H. Lee, D. -Y. Kim, H. -M. Park, G. Auchterlonie, and J. Drennan, 'Mitigation of Highly Resistive Grain-Boundary Phase in Gadolinia-Doped Ceria by the Addition of SrO,' Electrochemical and Solid-state Letters., 10 [5] B91-B95 (2007) https://doi.org/10.1149/1.2710959
  45. Y. H. Cho, P. -S. Cho, G. Auchterlonie, D. K. Kim, J.-H. Lee, D. -Y. Kim, H. -M. Park, and J. Drennan, 'Enhancement of Grain-Boundary Conduction in Gadolinia-Doped Ceria by the Scavenging of Highly Resistive Siliceous Phase,' Acta Mater., 55 4807-15 (2007) https://doi.org/10.1016/j.actamat.2007.05.001
  46. H. Yahiro, T. Ohuchi, K. Eguchi, and H. Arai, 'Electrical Properties and Microstructure in the System Ceria-alkaline Earth Oxide,' J. Mater. Sci., 23 1036-1041 (1988) https://doi.org/10.1007/BF01154008
  47. D. -S. Kim, P. -S. Cho, J. -H. Lee, D. -Y. Kim, and S. B. Lee 'Improvement of Grain-boundary Conduction in Gadoliniadoped Ceria Via Post-sintering Heat Treatment,' Solid State Ionics, 177 2125-21 (2006) https://doi.org/10.1016/j.ssi.2005.12.014