EFFECT OF PULSED ELECTROMAGNETIC FIELD STIMULATION ON THE EARLY BONE CONSOLIDATION AFTER DISTRACTION OSTEOGENESIS IN RABBIT MANDIBLE MODEL

가토 하악골 골신장 후 맥동전자기장이 조기 골경화에 미치는 효과에 대한 연구

  • Hwang, Kyung-Kyun (Dept. of Oral & Maxillofacial Surgery, College of Medicine, Hanyang University) ;
  • Cho, Tae-Hyung (Dental Research Institute, Brain Korea 21 for Dental Life Science, Seoul National University) ;
  • Song, Yun-Mi (Dental Research Institute, Brain Korea 21 for Dental Life Science, Seoul National University) ;
  • Kim, Do-Kyun (Dept. of Oral & Maxillofacial Surgery, School of Dentistry, Seoul National University) ;
  • Han, Sung-Hee (Dept. of Oral & Maxillofacial Surgery, School of Dentistry, Seoul National University) ;
  • Kim, In-Sook (Dental Research Institute, Brain Korea 21 for Dental Life Science, Seoul National University) ;
  • Hwang, Soon-Jung (Dental Research Institute, Brain Korea 21 for Dental Life Science, Seoul National University)
  • 황경균 (한양대학교 의과대학 치과학교실 구강악안면외과) ;
  • 조태형 (서울대학교 치학연구소, BK 21 치의학생명과학사업단) ;
  • 송윤미 (서울대학교 치학연구소, BK 21 치의학생명과학사업단) ;
  • 김도균 (서울대학교 치과대학 구강악안면외과학교실) ;
  • 한성희 (서울대학교 치과대학 구강악안면외과학교실) ;
  • 김인숙 (서울대학교 치학연구소, BK 21 치의학생명과학사업단) ;
  • 황순정 (서울대학교 치학연구소, BK 21 치의학생명과학사업단)
  • Published : 2007.03.31

Abstract

Introduction: Distraction osteogenesis is widely used as for bone lengthening in patients with maxillofacial deformity and alveolar bone atrophy. One of the major problems in distraction osteogenesis is long consolidation period for 2-3 months, in which the devices have to be fixed on the bone to prevent relapse. It results in scar formation on the face, disturbance of mastication and speech. This study was performed to evaluate the stimulating effect of pulsed electromagnetic field on the early bone consolidation in distraction osteogenesis. Materials and methods: Total 10 rabbit were used (5 for control group, 5 for experimental group). A vertical osteotomy in the mandibular body was performed and the distraction device was fixed. After 5 days distraction was done 1mm per a day for 7 days. A pulsed electromagnetic field (38 Gauss, 60 Hz) was applied for 8 hours per day and it continued for 5 days immediately after distraction in the experimental group. Both groups were sacrificed after 2 weeks. Histological specimens with H&E and Masson Trichrome staining were made and histomorphometrically analysed with image analyser. Results: The device for distraction osteogenesis was displaced in one animal for each group, therefore, only four animals in both groups were evaluated. In both groups, a new bone formation was observed in the distracted area after 2 weeks. The bone formation was enhanced in the experimental groups ($31.76{\pm}8.68%$) compared with control group ($9.94{\pm}3.23%$), its difference was statistically significant (p<0.001). Conclusion: This study suggests that electrical stimulation with electromagnectic field may be effective in the early bone formation after distraction osteogenesis. Further studies with large number of animals are needed before clinical application.

Keywords

References

  1. Ilizarov GA : The tension-stress effect on the genesis and growth of tissue : Part I. the influence of stability of fixation and soft-tissue preservation. Clin Orthop 238 : 249, 1989
  2. Ilizarov GA : The tension-stress effect on the genesis and growth of tissue: Part II. the influence of rate and frequency of distraction. Clin Orthop 239 : 263, 1989
  3. McCarthy JG, Schreiber J, Karp N. Thorne Ch et al : Lengtheening the human mandible by gradual distraction. Plast Reconstr Surg 89 : 1, 1992 https://doi.org/10.1097/00006534-199289010-00001
  4. Schreuder WH, Jansma J, Bierman MW et al : Distraction osteogenesis versus bilateral sagittal split osteotomy for advancement of the retrognathic mandible: a review of the literature. Int J Oral Maxillofac Surg 36 : 103, 2007 https://doi.org/10.1016/j.ijom.2006.12.002
  5. Blcok MS, Chang A, Crawford C : Mandibular alveolar ridge augmentation in the dog using distraction osteogenesis. J Oral Maxillofac Surg 54 : 309, 1996 https://doi.org/10.1016/S0278-2391(96)90750-8
  6. Block MS, Almerico B, Crawford C et al : Bone response to functioning implants in dog mandibular alveolar ridges augmented with distraction osteogenesis. Int J Oral Maxillofac Implants. 13 : 342, 1998
  7. Chin M, Toth BA : Distraction osteogenesis in maxillofacial surgery using internal devices: Review of five cases. J Oral Maxillofac Surg 54 : 45, 1996 https://doi.org/10.1016/S0278-2391(96)90303-1
  8. Hwang SJ, Jung JG, Jung JU et al : Vertical alveolar bone distraction at molar region using lag screw principle. J Oral Maxillofac Surg 62 : 787, 2004 https://doi.org/10.1016/j.joms.2004.01.011
  9. Saulacic N, Somosa Martin M, de Los Angeles Leon Camacho M et al : Complications in alveolar distraction osteogenesis: a clinical investigation. J Oral Maxillofac Surg. 65 : 267, 2007 https://doi.org/10.1016/j.joms.2006.03.049
  10. Schreuder WH, Jansma J, Bierman MW et al : Distraction osteogenesis versus bilateral sagittal split osteotomy for advancement of the retrognathic mandible: a review of the literature. Int J Oral Maxillofac Surg. 36 : 103, 2007 https://doi.org/10.1016/j.ijom.2006.12.002
  11. Satoh K, Mitsukawa N, Tosa Y et al : Simultaneous hybrid of maxillary Le Fort I halo distraction and mandibular set-back for patients with severe cleft jaw deformity. J Craniofac Surg. 17 : 962, 2006 https://doi.org/10.1097/01.scs.0000230017.62143.61
  12. Nout E, Wolvius EB, van Adrichem LN et al : Complications in maxillary distraction using the RED II device: a retrospective analysis of 21 patients. Int J Oral Maxillofac Surg 35 : 897, 2006 https://doi.org/10.1016/j.ijom.2006.06.019
  13. Mazzonetto R, Allais M, Maurette PE et al : A retrospec-tive study of the potential complications during alveolar distraction osteogenesis in 55 patients. Int J Oral Maxillofac Surg 36 : 6, 2007 https://doi.org/10.1016/j.ijom.2006.06.014
  14. Brighton CT, Shaman P, Heppenstall RB et al : Tibial nonunion treated with direct current, capacitive coupling, or bone graft. Clin Orthop Relat Res 321 : 223, 1995
  15. Simonis RB, Parnell EJ, Ray PS et al : Electrical treatment of tibial non-union: a prospective, randomised, double- blind trial. Injury. 34 : 357, 2003 https://doi.org/10.1016/S0020-1383(02)00209-7
  16. Hodges SD, Eck JC, Humphreys SC : Use of electrical bone stimulation in spinal fusion. J Am Acad Orthop Surg 11 : 81, 2003 https://doi.org/10.5435/00124635-200303000-00002
  17. Fukada E, Yasuda I : On the piezoelectric effect of bone. J Physiol Soc Jpn 12 : 1158, 1957 https://doi.org/10.1143/JPSJ.12.1158
  18. Yasuda I : On the piezoelectric property of bone. J Jpn Orthop Surg Soc 28 : 267, 1954
  19. Friedenberg ZB, Brighton CT : Bioelectric potentials in bone.J Bone Joint Surg Am 48A : 915, 1966
  20. Hartshorne E : On the causes and treatment of pseudarthrosis and especially that form of it sometimes called supernumerary joint. Am J Med 1 : 121, 1841
  21. Lente RW : Cases of ununited fracture treated by electricity. NY State J Med 5 : 317, 1850
  22. Friedenberg ZB, Harlow MC, Brighton CT : Healing of medial malleolus by means of direct current: A case report. J Trauma 11 : 883, 1971 https://doi.org/10.1097/00005373-197110000-00010
  23. Bassett CAL, Pawluk RJ, Pilla AA : Acceleration of fracture repair by electromagnetic fields: A surgically noninvasive method. Ann N Y Acad Sci 238 : 242, 1974 https://doi.org/10.1111/j.1749-6632.1974.tb26794.x
  24. Bassett CAL, Pawluk RJ, Pilla AA : Augmentation of bone repair by inductively coupled electromagnetic fields. Science 184 : 575, 1974 https://doi.org/10.1126/science.184.4136.575
  25. El-Hakim IE, Azim AMA, El-Hassan MFA et al : Preliminary investigation into the effects of electrical stimulation on mandibular distraction osteogenesis in goats. Int. J Oral Maxillofac Surg 33 : 42, 2004 https://doi.org/10.1054/ijom.2003.0445
  26. Farndale RW, Murray JC : Pulsed electromagnetic fields promote collagen production in bone marrow fibroblasts via athermal mechanisms. Calcif Tissue Int 37 : 178, 1985 https://doi.org/10.1007/BF02554838
  27. Brighton CT, Wang W, Seldes R et al : Signal transduction in electrically stimulated bone cells. J Bone Joint Surg Am 83-A : 1514, 2001
  28. Lorich DG, Brighton CT, Gupta R et al : Biochemical pathway mediating the response of bone cells to capacitive coupling. Clin Orthop Relat Res. 350 : 246, 1998
  29. Benazzo F, Mosconi M, Beccarisi G et al : Use of capacitive coupled electric fields in stress fractures in athletes. Clin Orthop Relat Res 310 : 145, 1995
  30. Saltzman C, Lightfoot A, Amendola A : PEMF as treatment for delayed healing of foot and ankle arthrodesis. Foot Ankle Int 25 : 771, 2004 https://doi.org/10.1177/107110070402501102
  31. Bodamyali T, Bhatt B, Hughes FJ et al : Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro. Biochem Biophys Res Commun 250 : 458, 1998 https://doi.org/10.1006/bbrc.1998.9243
  32. Fitzsimmons RJ, Strong DD, Mohan S et al : Low-amplitude, low frequency electric field-stimulated bone cell proliferation may in part be mediated by increased IGF-II release. J Cell Physiol 150 : 84, 1992 https://doi.org/10.1002/jcp.1041500112
  33. Ciombor DM, Lester G, Aaron RK et al : Low frequency EMF regulates chondrocyte differentiation and expression of matrix proteins. J Orthop Res 20 : 40, 2002 https://doi.org/10.1016/S0736-0266(01)00071-7
  34. KG Hwang, JH Lee, MJ Kim et al.: A study of effect of pulsed electromagnetic fields on osteogenesis in rabbit cranial bone defect. J Kor Oral Maxillofac Surg 28 : 264, 2002
  35. SW Kim, KG Hwang, BS Lim et al.: The effect of pulsed magnetic fields on ${\beta}$ -TCP graft in rabbit cranial bone defect. J Kor Oral Maxillofac Surg 32 : 360, 2006
  36. Gerling JA, Sinclair PM, Roa RL : The effect of pulsating electromagnetic fields on condylar growth in guinea pigs. Am J Orthop 87 : 211, 1985 https://doi.org/10.1016/0002-9416(85)90042-9
  37. Shao Z, Liu B, Peng Q, Liu W et al : Transplantation of osteoblast-like cells to the distracted callus in the rabbit mandible. Plast Reconstr Surg 119 : 500, 2007 https://doi.org/10.1097/01.prs.0000246374.53516.78
  38. Kitoh H, Kitakoji T, Tsuchiya H et al : Transplantation of culture expanded bone marrow cells and platelet rich plasma in distraction osteogenesis of the long bones. Bone 40 : 522, 2007 https://doi.org/10.1016/j.bone.2006.09.019
  39. SH Oh, SK Min, KS Lee, MJ Kang, EC Kim : Early bone formation capacity of PRP on a distraction osteogenesis in rabbit. J Kor Maxillofac Plas Recontr Surg 26 : 521, 2004
  40. SJ Ryu, CK Yi, BH Choi : Effect of platelet-rich plasma on bone formation in distracted area of canine mandible. J Kor Oral Maxillofac Surg 27 : 498, 2001
  41. Hu J, Qi MC, Zou SJ et al : Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res 25 : 241, 2007 https://doi.org/10.1002/jor.20288
  42. Wang L, Zhou S, Liu B et al : Locally applied nerve growth factor enhances bone consolidation in a rabbit model of mandibular distraction osteogenesis. J Orthop Res 24 : 2238, 2006 https://doi.org/10.1002/jor.20269
  43. Miloro M, Miller JJ, Stoner JA : Low-level laser effect on mandibular distraction osteogenesis. J Oral Maxillofac Surg 65 : 168, 2007 https://doi.org/10.1016/j.joms.2006.10.002
  44. Mayr E, Laule A, Suger G et al : Radiographic results of callus distraction aided by pulsed low-intensity ultrasound. J Orthopaedic Trauma 15 : 407, 2001 https://doi.org/10.1097/00005131-200108000-00005
  45. Hagiwara T, Bell W H : Effect of electrical stimulation on mandibular distraction osteogenesis. J Cranio-Maxillofac Surg 28 : 12, 2000 https://doi.org/10.1054/jcms.1999.0104
  46. Fredericks C F, Piehl D, Baker J T et al : Effects of pulsed electromagnetic field stimulating on distraction osteogenesis in the rabbit tibial leg lengthening model. J Pediat Ortho 23 : 478, 2003 https://doi.org/10.1097/00004694-200307000-00012
  47. Borsalino G, Bagnacani M, Bettati E et al : Electrical stimulation of human intertrochanteric osteotomies: Doubleblind study. Clin Orthop 237 : 256, 1988
  48. Hinsenkamp MG : Treatment of non-unions by electromagnetic stimulation. Acta Orthop Scand Suppl 196 : 63, 1982
  49. Tabrah FL, Ross P, Hoffmeier M et al : Clinical report on long-term bone density after short-term EMF application. Bioelectromagnetics 19 : 75, 1998 https://doi.org/10.1002/(SICI)1521-186X(1998)19:2<75::AID-BEM3>3.0.CO;2-0
  50. Spadaro JA, Becker RO : Function of implanted cathodes in electrodeinduced bone growth, Med Biol Eng Comput 17 : 769, 1979 https://doi.org/10.1007/BF02441560
  51. Bax BE, Alam AS, Banerji B et al : Stimulation of osteoclastic bone resorption by hydrogen peroxide, Biochem Biophys Res Commun 183 : 1153, 1992 https://doi.org/10.1016/S0006-291X(05)80311-0
  52. Bodamyal T, Kanczler JM, Simon B et al : Effect of faradic products on direct current-stimulated calvarial organ culture calcium levels, Biochem Biophys Res Commun. 264 : 657, 1999 https://doi.org/10.1006/bbrc.1999.1355
  53. Food and Drug Administration : Summary of Safety and Effectiveness: Osteostim HS11 Implantable Bone Growth Stimulator. Silver Spring, Office of Device Evaluation, 1987
  54. Spadoro JA : Bioelectrical properties of bone and response of bone to electrical stimuli. In Bone. Vol 3, CRC Press, Boston, 1991, p. 109
  55. Kushner A : Evaluation of Wolff's law of bone formation. J Bone J Surg 22 : 589, 1940
  56. Marino AA, Becker RO : Origin of the piezoelectric effect in bone. Calcif Tissue Res 8 : 177, 1971 https://doi.org/10.1007/BF02010135
  57. Hastings GW, Mahmud FA : Electrical effects in bone. J Biomed Eng 10 : 515, 1988 https://doi.org/10.1016/0141-5425(88)90109-4
  58. Bassett CAL, Valdes MG, Hernandez F : Modification of fracture repair with selected pulsing electromagnetic fields. J Bone Joint Surg Am 64A : 888, 1982
  59. Fredericks DC, Nepola JV, Baker JT et al : Effects of pulsed electromagnetic fields on bone healing in a rabbit tibial osteotomy model. J Orthop Trauma.14 : 93, 2000 https://doi.org/10.1097/00005131-200002000-00004
  60. Cruess RL, Kan K, Bassett CA : The effect of pulsing electromagnetic fields on bone metabolism in experimental disuse osteoporosis. Clin Orthop 173 : 245, 1983
  61. Rubin CT, McLeod KJ, Lanyon LE : Prevention of osteoporosis by pulsed electromagnetic fields. J Bone Joint Surg [Am] 71 : 411, 1989 https://doi.org/10.2106/00004623-198971030-00016
  62. Luna Gonzalez F, Lopez Arevalo R, Meschian Coretti S et al : Pulsed electromagnetic stimulation of regenerate bone in lengthening procedures. Acta Orthop Belg 71 : 571 2005
  63. Taylor KF, Inoue N, Rafiee B et al : Effect of pulsed electromagnetic fields on maturation of regenerate bone in a rabbit limb lengthening model. J Orthop Res 24 : 2, 2006 https://doi.org/10.1002/jor.20014
  64. Luben RA, Cain CD, Chen MC et al : Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of responses to parathyroid hormone by low-energy, low frequency fields. Proc Natl Acad Sci 79 : 4180, 1982
  65. Yen-Patton GP, Patton WF, Beer DM et al : Endothelial cell response to pulsed electromagnetic fields: stimulation of growth rate and angiogenesis in vitro. J Cell Physiol 134 : 37, 1988 https://doi.org/10.1002/jcp.1041340105
  66. Ryaby JT : Clinical effects of electromagnetic and electric fields on fracture healing. Clin Orthop 355S : S205, 1998 https://doi.org/10.1097/00003086-199810001-00021
  67. Bodamyali T, Bhatt B, Hughes JF et al. Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenic proteins 2 and 4 in rat osteoblasts in vitro. Biochem Biophys Res Comm 250 : 458, 1998 https://doi.org/10.1006/bbrc.1998.9243
  68. Zhuang H, Wang W, Seldes RM et al : Electrical stimulation induces the level of TGF-${\beta}1$ mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochem Biophys Res Comm 237 : 225, 1997 https://doi.org/10.1006/bbrc.1997.7118