기계식 마이크로 머시닝을 이용한 마이크로 형상의 특성과 비용 평가

Fabrication and Characterization of Micro parts by Mechanical Micro Machining: Precision and Cost Estimation

  • 강혁진 (서울대학교 기계항공공학부, 정밀기계설계공동연구소) ;
  • 최운용 (서울대학교 기계항공공학부, 정밀기계설계공동연구소) ;
  • 안성훈 (서울대학교 기계항공공학부)
  • 발행 : 2007.01.01

초록

Recently, demands on mechanical micro machining technology have been increased in manufacturing of micro-scale precision shapes and parts. The main purpose of this research is to verify the accuracy and cost efficiency of the mechanical micro machining. In order to measure the precision and feasibility of mechanical micro machining, various micro features were machined. Aluminum molds were machined by a 3-axis micro stage in order to fabricate microchips with $200{\mu}m$ wide channel for capillary electrophoresis, then the same geometry of microchip was made by injection molding. To evaluate the cost efficiency of various micro manufacturing processes, cost estimation for mechanical micro machining was conducted, and actual costs of microchips fabricated by mechanical micro machining, injection molding, and MEMS (Micro electro mechanical system) were compared.

키워드

참고문헌

  1. Chae, J., Park, S. S. and Freiheit, T., 'Investigation of micro-cutting operations,' International Journal of Machine Tools & Manufacture, Vol. 46, No. 3-4, pp. 313-332, 2006 https://doi.org/10.1016/j.ijmachtools.2005.05.015
  2. Luo, X., Cheng, K., Webb, D. and Wardle, F., 'Design of ultraprecision machine tools with applications to manufacture of miniature and micro components,' Journal of Materials Processing Technology, Vol. 167, No. 2-3, pp. 515-528, 2005 https://doi.org/10.1016/j.jmatprotec.2005.05.050
  3. Takeuchi, Y., 'Ultraprecision micromachining of small workpieces with complicated shape,' Proceedings of Nanoengineering Symposium, pp. 129-134,2005
  4. Schaller, T., Bohn, L., Mayer, J. and Schubert, K., 'Microstructure grooves with a width of less than 50 ${\mu}m$ cut with ground hard metal micro end mills,' Precision Engineering, Vol. 23, No.4, pp. 229-235, 1999 https://doi.org/10.1016/S0141-6359(99)00011-2
  5. Uhlmann, E., Piltz, S. and Doll, U., 'Machining of micro/miniature dies and moulds by electrical discharge machining - Recent development,' Journal of Materials Processing Technology, Vol. 167, No. 23,pp. 488-493, 2005 https://doi.org/10.1016/j.jmatprotec.2005.06.013
  6. Uhlmann, E., Piltz, S. and Schauer, K., 'Micro milling of sintered tungsten-copper composite materials,' Journal of Materials Processing Technology, Vol. 167, No. 2-3, pp. 402-407, 2005 https://doi.org/10.1016/j.jmatprotec.2005.05.022
  7. Lee, K. H, Ahn, S. H., Dornfeld, D. and Wright, P. K., 'The effect of run-out on design for manufacturing in micro-machining process,' International Mechanical Engineering Congress and Exposition, pp. 11-16, 2001
  8. Yoshino, M., Matsumura, T., Umehara, N., Akagami, Y., Aravindan, S. and Ohno, T., 'Engineering surface and development of a new DNA micro array chip,' Wear, Vol. 260, No.3, pp. 274-286, 2005 https://doi.org/10.1016/j.wear.2005.04.028
  9. Ribeiro, J. C., Minas, G, Turmezei, P., Wolffenbuttel, R. F. and Correia, J., 'A SU-8 fluidic microsystem for biological fluids analysis,' Sensor and Actuators A , Vol. 123-124, No. 23, pp. 77-81, 2005 https://doi.org/10.1016/j.sna.2005.03.032
  10. Mecomber, J. S., Hurd, D. and Limbach, P. A., 'Enhanced machining of micron-scale features in microchip molding masters by CNC milling,' International Journal of Machine Tools & Manufacture, Vol. 45, No. 12-13, pp. 1542-1550, 2005
  11. Liu, D., Zhou, X., Zhong, R., Ye, N., Chang, G, Xiong. W., Mei, X. and Lin, B., 'Analysis of multiplex PCR fragments with PMMA microchip,' Talanta, Vol. 68, No.3, pp. 616-622, 2005 https://doi.org/10.1016/j.talanta.2005.04.064
  12. Kim, M. S., Cho, S. I., Lee, K. N. and Kim, Y. K., 'Fabrication of microchip electrophoresis devices and effects of channel surface properties on separation efficiency,' Sensors and Actuators B, Vol. 107, No.2, pp. 818-824, 2004
  13. Lee, S. H., Cho, S. I., Lee, C. S., Kim, B. G and Kim, Y. G, 'Microfluidic chip for biochemical reaction and electrophoretic separation by quantitative volume control,' Sensors and Actuators B, Vol. 110, No. 1, pp. 164-173, 2005 https://doi.org/10.1016/j.snb.2005.01.030
  14. Pumera, M., 'Microchip-based electrochromatography: designs and applications,' Talanta, Vol. 66, No.4, pp. 1048-1062, 2005 https://doi.org/10.1016/j.talanta.2005.01.006
  15. Lee, H. S., 'In-plane deformation analysis and design of experiments approach for injection molding of light guide plate for LCDs,' International Journal of Precision Engineering and Manufacturing, Vol. 7, No. 1, pp. 51-56, 2006
  16. Ostwald, P. F., 'Engineering cost estimating,' Prentice Hall, pp. 250 - 279, 2002
  17. Kwon, Y. and Fischer, G. W., 'A novel approach to quantifying tool wear and tool life measurements for optimal tool management,' International Journal of Machine Tools & Manufacture, Vol. 43, No.4, pp. 359-368, 2003 https://doi.org/10.1016/S0890-6955(02)00271-7
  18. Shehab, E. M. and Abdalla, H. S., 'Manufacturing cost modeling for concurrent product development,' Robotics and Computer Integrated Manufacturing, Vol. 17, No.4, pp. 341-353, 2001 https://doi.org/10.1016/S0736-5845(01)00009-6
  19. Lee, K. and Dornfeld, D. A., 'Micro-burr formation and minimization through process control,' Precision Engineering, Vol. 29, No.2, pp. 246-252, 2005 https://doi.org/10.1016/j.precisioneng.2004.09.002
  20. Kalpakjian, S. and Schmid, S. R., 'Manufacturing processes for engineering materials,' Addison Wesley, pp. 490-493, 2002