DOI QR코드

DOI QR Code

Effect of SO42- Ion on Corrosion and Electrochemical Migration Characteristics of Eutectic SnPb Solder Alloy

공정조성 SnPb Solder 합금의 부식 및 Electrochemical Migration 특성에 미치는 SO42- 이온의 영향

  • Jung, Ja-Young (School of Materials Science and Engineering, Andong National University) ;
  • Yoo, Young-Ran (School of Materials Science and Engineering, Andong National University) ;
  • Lee, Shin-Bok (School of Materials Science and Engineering, Seoul National University) ;
  • Kim, Young-Sik (School of Materials Science and Engineering, Andong National University) ;
  • Joo, Young-Chang (School of Materials Science and Engineering, Seoul National University) ;
  • Park, Young-Bae (School of Materials Science and Engineering, Andong National University)
  • 정자영 (안동대학교 신소재공학부) ;
  • 유영란 (안동대학교 신소재공학부) ;
  • 이신복 (서울대학교 재료공학부) ;
  • 김영식 (안동대학교 신소재공학부) ;
  • 주영창 (서울대학교 재료공학부) ;
  • 박영배 (안동대학교 신소재공학부)
  • Published : 2007.01.27

Abstract

Electrochemical migration phenomenon is correlated with ionization of anode electrode, and ionization of anode metal has similar mechanism with corrosion phenomenon. In this work, in-situ water drop test and evaluation of corrosion characteristics for SnPb solder alloys in $Na_2SO_4$ solutions were carried out to understand the fundamental electrochemical migration characteristics and to correlate each other. It was revealed that electrochemical migration behavior of SnPb solder alloys was closely related to the corrosion characteristics, and Sn Ivas primarily ionized in ${SO_4}{^2-}$ solutions. The quality of passive film formed at film surface seems to be critical not only for corrosion resistance but also for electrochemical migration resistance of solder alloys.

Keywords

References

  1. B. Rudra and D. Jennings, IEEE Trans. Reliab., 43(3), 354 (1994) https://doi.org/10.1109/24.326425
  2. O. Baradel and R. Nuttall, IEEE Colloquium on Electrochemical Measurement, 8/1 (1994)
  3. G. Harsanyi, IEEE Trans. Compon. Packaging, Manufact. Tecnol, Part A, 18(3), 602 (1995) https://doi.org/10.1109/95.465159
  4. P. Yalamanchili, M. Al-Sheikhly and A. Christou, IEEE International Reliability Physics Symposium, 34th Annual Proceedings, 258 (1996)
  5. W. J. Ready, L. J. Turbini, S. R. Stock and B. A. Smith, IEEE International Reliability Physics Symposium, 34th Annual Proceedings, 267 (1996)
  6. T. Takemoto, R. M. Latanisioni, T. W. Eagart and A. Matsunawa, Corros. Sci., 39(8), 1415 (1997) https://doi.org/10.1016/S0010-938X(97)00038-3
  7. H. Shitamoto and T. Nagatani, J. Phys. D: Appl. Phys, 31, 1137 (1998) https://doi.org/10.1088/0022-3727/31/10/002
  8. G. Harsanyi, IEEE Electron Device Lett., 20(1), 5 (1999) https://doi.org/10.1109/55.737556
  9. W. J. Ready and L. J. Turbini, J. Eletron. Mater, 31(11), 1208 (2002) https://doi.org/10.1007/s11664-002-0012-z
  10. S. B. Lee, Y. R. Yoo, J. Y. Jung, Y. B. Park, Y. S. Kim and Y. C. Joo, Thin Solid Films, 504, 294 (2006) https://doi.org/10.1016/j.tsf.2005.09.022
  11. T. Takemoto, R. M. Latanisioni, T. W. Eagart and A. Matsunawa, Corros. Sci., 39(8), 1415 (1997) https://doi.org/10.1016/S0010-938X(97)00038-3
  12. J. Y. Jung, S. B. Lee, Y. R. Yoo, Y. S. Kim, Y. C. Joo and Y. B. Park, J. Microelectronics & Packaging Soc., 13(3), 1 (2006)
  13. P. Simon, N. Bui, N. Pebere, F. Dabosi and L. Albert, J. Power Sources, 55, 63 (1995) https://doi.org/10.1016/0378-7753(94)02175-3
  14. H. P. Hack, Metals Handbook, 13, Corrosion, 9th ed, ASM, Metals Park, OH (1987)
  15. P. Simson, N. Bui, N. Pebere and F. Dabosi, J. Power Sources, 53, 163 (1995) https://doi.org/10.1016/0378-7753(94)01986-6
  16. E. E. Abd El Aal, J. Power Sources, 75, 36 (1998) https://doi.org/10.1016/S0378-7753(98)00080-9
  17. E. F. EI-Sherbini and S. S. Abd EI Rehim, Mater. Chem. Phys., 88, 17 (2004) https://doi.org/10.1016/j.matchemphys.2003.10.020