부직포 여과막 생물반응조에서 알칼리도가 질산화 성능에 미치는 영향

Effects of Alkalinity on the Nitrification Capability of Nonwoven Fabric Filter Bioreactor

  • 배민수 (인하대학교 사회개발시스템공학부) ;
  • 안윤찬 (인하대학교 사회개발시스템공학부) ;
  • 장명배 (인하대학교 사회개발시스템공학부) ;
  • 조윤경 (위스콘신대학교 토목환경공학부) ;
  • 조광명 (인하대학교 사회개발시스템공학부)
  • Bae, Min-Su (School of Environmental and Civil Engineering, Inha University) ;
  • Ahn, Yoon-Chan (School of Environmental and Civil Engineering, Inha University) ;
  • Jang, Myung-Bae (School of Environmental and Civil Engineering, Inha University) ;
  • Cho, Yun-Kyung (Department of Civil and Environmental Engineering, University of Wisconsin-Madison) ;
  • Cho, Kwang-Myeung (School of Environmental and Civil Engineering, Inha University)
  • 발행 : 2007.07.31

초록

부직포 여과막 생물반응조의 질산화 성능을 파악하기 위하여 주입폐수의 암모니아 농도를 $54\sim1,400$ mg/L 그리고 알칼리도를 $43\sim10,480$ mg/L로 변화시키면서 약 11시간의 체류시간에서 641일간 실험을 실시한 결과 반응조의 MLSS농도는 최초의 2,650 mg/L 에서 830 mg/L까지 감소하였다가 최고 8,340 mg/L까지 증가함으로써 반응조의 용적부하는 $0.120\sim3.130$ kg $NH_3-N/m^3-day$의 범위에서 변하였으나 F/M 비는 $0.067\sim0.414$ kg $NH_3-N/kg$ MLSS-day의 적은 변화를 보였다. 각 실험단계별 평균 질산화 효율이 $35.2\sim100%$로서, 최대 질산화율은 2.970 kg $N/m^3-day$ 또는 0.489 g N/g MLVSS-day로 나타났다. MLVSS의 질산화미생물 분율은 최초의 7.1%에서 최고 100%까지 변하였으나 부직포 여과막에 형성된 생물막의 경우에는 2.2%의 매우 낮은 값을 보였다. 미생물 성장계수는 0.117 g VSS/g N removed로 그리고 알칼리도 소모량은 평균 7.08 g alkalinity/g NOx-N produced로 측정되었다. 이러한 실험결과로 보아 부직포 여과막 생물반응조가 고농도 암모니아 폐수의 질산화에 적합한 공법으로 판단된다.

To investigate the effects of alkalinity on the nitrification capability of the nonwoven fabric filter bioreactor(NFBR), an experiment was performed for 641 days at a hydraulic retention time of approximately 11 hours by changing the influent concentration of $NH_3-N$ from 54 mg/L to 1,400 mg/L and alkalinity from 43 mg/L to 10,480 mg/L. The MLSS concentration reduced from an initial value of 2,650 mg/L down to 830 mg/L, then increased up to 8,340 mg/L. Though the volumetric loading rate varied in a range of $0.120\sim3.130$ kg $NH_3-N/m^3-day$, the F/M ratio showed a narrow range of $0.067\sim0.414$ kg $NH_3-N/kg$ MLSS-day. The average nitrification efficiency at each experimental stage resulted in the range of $35.2\sim100%$, and the maximum nitrification rate was 2.970 kg $N/m^3-day$ or 0.489 g N/g MLVSS-day. The nitrifiers' fraction of the MLVSS increased up to 100% from an initial value of 7.1% and the biofilm formed on the nonwoven fabric filter showed a very low nitrifiers' fraction of mere 2.2%. The growth yield of the MLSS and the alkalinity consumption rate were computed to be 0.117 g VSS/g N removed and 7.08 g alkalinity/g $NO_x^--N$ produced, respectively. Results of the research suggest that NFBR could be an adequate process for nitrification of wastewaters with high ammonia concentrations.

키워드

참고문헌

  1. U.S. EPA, Manual Nitrogen Control, EPA/625/R-93/010, Washington, D.C.(1993)
  2. Rittmann, B. E. and McCarty, P. L., Environmental Biotechnology : Principles and Applications, McGraw-Hill(2001)
  3. Grady, Jr., C. P. L., Daigger, G. T., and Lim, H. C., Biological Wastewater Treatment, 2nd ed., Marcel Dekker, Inc.(1999)
  4. Tsuneda, S., Nagano, T., Hoshino, T., Ejiri, Y., Noda, N., and Hirata, A. 'Characterization of nitritying granules in an aerobic upflow fluidized bed Reactor,' Water Res., 37, 4965-4973(2003) https://doi.org/10.1016/j.watres.2003.08.017
  5. Hu, Z.-R., Wentzel, M. C., and Ekama, G. A., 'External nitrification in biological nutrient removal activated sludge systems,' Water Sci. Technol., 43(1), 251-260(2001)
  6. Satoh, H., Okabe, S., Yamaguchi, Y., and Watanabe, Y., 'Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode,' Water Res., 37, 2206-2216(2003) https://doi.org/10.1016/S0043-1354(02)00617-6
  7. Salem, S., Berends, D. H. J. G., Heijnen, J. J., and van Loosdrecht M. C. M., 'Bio-augmentation by nitrification with return sludge,' Water Res., 37, 1794-1804(2003) https://doi.org/10.1016/S0043-1354(02)00550-X
  8. Berends, D. H. J. G., Salem, S., van der Roest, H. F., and van Loosdrecht, M. C. M., 'Boosting nitrification with the BABE technology,' Water Sci. Technol., 52(4), 63-70(2005)
  9. Azad, H. S., Industrial Wastewater Management Handbook, McGraw-Hill Book Co.(1976)
  10. Carrera, J., Baeza, J. A., Vicent, T., and Lafuente, J., 'Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system,' Water Res., 37, 4211-4221(2003) https://doi.org/10.1016/S0043-1354(03)00338-5
  11. Im, S. H., Bae, M. S., and Cho, K. M., 'Treatment of sewage with a nonwoven fabric filter bioreactor,' J. of Korean Soc. on Water Qual., 19(1), 99-107(2003)
  12. Lee. J.-H. and Cho, K.-M., 'Removal of Organic Matter and Nitrogen in Sewage Using Alternately Intermittently Aerated Nonwoven Fabric Filter Bioreactor,' J. of Korean Soc. of Env. Eng., 26(2), 184-190(2004)
  13. Ahn, Y.-C., Bae, M.-S., Lee, J.-H., Cho, Y.-K., and Cho, K.-M., 'Effects of C/N Ratio on Removal of Organic Matter and Nitrogen in Alternately Intermittently Aerated Nonwoven Fabric Filter Bioreactors,' J. of Korean Soc. of Env. Eng., 27(5), 499-506(2005)
  14. Jung, K.-U., Bae, M.-S., Lee, J.-H., Cho, Y.-K., and Cho, K.-M., 'Effects of MLSS Concentration and Influent C/N Ratio on the Nitrogen Removal Efficiency of Alternately Intermittently Aerated Nonwoven Fabric Filter Bioreactors,' KSEE, 28(5), 501-510(2006)
  15. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., Washington D.C., USA(1998)
  16. 환경부 고시 제 96-32호, 수질환경오염공정시험법(1996)
  17. Turk, O. and Mavinic, D. S., 'Selective inhibition : a novel concept for removing nitrogen from highly nitrogenous wastes,' Environ. Technol Lett., 8, 419-426(1987) https://doi.org/10.1080/09593338709384500
  18. Abeling, U. and Seyfried, C. F., 'Anaerobic-aerobic treatment of high-strength ammonia wastewater - nitrogen removal via nitrite,' Water Sci. Technol., 26(5-6), 1007-1015(1992)
  19. Katsogiannis, A. N., Kornaros, M., and Lyberatos, G., 'Enhanced nitrogen removal in SBRs bypassing nitrate generation accomplished by multiple aerobic/anoxic phase pairs,' Water Sci. Technol., 47(11), 53-59(2003)
  20. Cecen, F. and Gonenc, I. E., 'Nitrogen removal characteristics of nitrification and denitrification filters,' Water Sci. Technol., 29(10-11), 409-416(1994)
  21. Balmelle, B., Nguyen, M., Capdeville, B., Cornier, J. C., and Deguin, A., 'Study of factors controlling nitrite build-up in biological processes for water nitrification,' Water Sci. Technol., 26(5-6), 1017-1025(1992)
  22. Turk, O. and Mavinic, D. S., 'Preliminary assessment of a shortcut in nitrogen removal from wastewater,' Can. J. Civ. Eng., 13, 600-605(1986) https://doi.org/10.1139/l86-094
  23. Yang, L. and Alleman, J. E., 'Investigation of batchwise nitrite build-up by an enriched nitrification culture,' Water Sci. Technol., 26(5-6), 997-1005(1992)
  24. Fux, C., Huang, D., Monti, A., and Siegriest, H., 'Difficulties in maintaining long-term partial nitirtation of ammonia-rich sludge digester liquids in a moving-bed biofilm reactor(MBBR),' Water Sci. Technol., 49(11-12), 53-60(2004)
  25. Walter, B., Hasse, C., and Raebiger, N., 'Combined nitrification/denitrification in a membrane reactor,' Water Res., 39, 2781-2788(2005) https://doi.org/10.1016/j.watres.2005.04.027
  26. Ciudad, G., Rubilar, O., Munoz, P., Ruiz, G., Chamy, R., Vergara, C., and Jeison, D., 'Partial nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen removal process,' Process Biochemistry, 40, 1715-1719(2005) https://doi.org/10.1016/j.procbio.2004.06.058
  27. Demsey, M. J., Lannigan, K. C., and Minall, R. J., 'Particulate-biofilm, expanded-bed technology for high-rate, low-cost wastewater treatment: nitrification,' Water Res., 39, 965-974(2005) https://doi.org/10.1016/j.watres.2004.12.017
  28. Tsuneda, S., Ejiri, Y., Nagano, T., and Hirata, A., 'Formation mechanism of nitrifying granules observed in an aerobic upflow fluidized bed(AUFB) reactor,' Water Sci. Technol., 49(11-12), 27-34(2004)
  29. Tarre, S., Beliavski, M., Denekamp, N., Gieseke, A., de Beer, D., and Green, M., 'High nitrification rate at low pH in a fluidized bed reactor with chalk as the biofilm carrier,' Water Sci. Technol., 49(11-12), 99-105(2004)
  30. Tsuneda, S., Nagano, T., Hoshino, T., Ejiri, Y., Noda, N., and Hirata, A., 'Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor,' Water Res., 37, 4965-4973(2003) https://doi.org/10.1016/j.watres.2003.08.017
  31. Pujol, R., Hamon, M., Kandel, X., and Lemmel, H., 'Biofilters: flexible, reliable biological reactors,' Water Sci. Technol., 29(10-11), 33-38(1994)
  32. Joerdening, H.-J., Hausmann, B., Demuth, B., and Zatrutzki, M., 'Use of immobilized bacteria for the wastewater treatment-examples from the sugar industry,' Water Sci. Technol., 53(3) 9-15(2006)
  33. Tsuneda, S., Ogiwara, M., Ejiri, Y., and Hirata, A., 'High-rate nitrification using aerobic granular sludge,' Water Sci. Technol., 53(3) 147-154(2006)
  34. Manser, R., Muche, K., Gujer, W., and Siegrist, H., 'A rapid method to quantify nitrifiers in activated sludge,' Water Res., 39, 1585-1593(2005) https://doi.org/10.1016/j.watres.2004.12.040
  35. Li, H., Yang, M., Zhang, Y., Liu, X., Gao, M., and Kamagata, Y., 'Comparison of nitrification performance and microbial community between submerged membrane bioreactor and conventional activated sludge system,' Water Sci. Technol., 5(6-7), 193-200(2005)
  36. Katsogiannis, A. N., Kornaros, M., and Lyberatos, G., 'Long-term effect of total cycle time and aerobic/anoxic phase ratio on nitrogen removal in a sequencing batch reactor,' Water Environ. Res., 74(4), 324-337(2002) https://doi.org/10.2175/106143002X140080
  37. Carrera, J., Vicent, T., and Lafuente, L., 'Effect of influent COD/N ratio on biological nitrogen removal (BNR) from high-strength ammonium industrial wastewater,' Process Biochemistry, 39(12), 2035-2041(2004) https://doi.org/10.1016/j.procbio.2003.10.005
  38. You, S. J., Hsu, C. L., Chung, S. H., and Ouyang, C. F., 'Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and $A^{2}/O$ systems,' Water Res., 37(10), 2281-2290(2003) https://doi.org/10.1016/S0043-1354(02)00636-X
  39. Manser, R., Muche, K., Gujer, W., and Siegrist, H., 'A rapid method to quantify nitrifiers in activated sludge,' Water Res., 39, 1585-1593(2005) https://doi.org/10.1016/j.watres.2004.12.040
  40. Jung, K.-U., Bae, M.-S., Cho, Y.-K., and Cho, K.-M., 'Minimization of Excess Actuvated Sludge in Nonwoven Fabric Filter Bioreactor,' J. of Korean Soc. of Env. Eng., 28(1), 88-96(2006)