UV와 $Fe^{2+}$, 그리고 $H_2O_2$를 조합한 고급산화 공정에서의 Pentachlorophenol의 분해 속도 연구

A Study on the Comparison of Advanced Oxidation Reactions Including UV, $Fe^{2+}$, and $H_2O_2$ for the Degradation of Pentachlorophenol

  • 손현석 (서울대학교 보건대학원 환경보건학과) ;
  • 김문경 (서울대학교 보건대학원 환경보건학과) ;
  • 조경덕 (서울대학교 보건대학원 환경보건학과)
  • Son, Hyun-Seok (Department of Environmental Health, School of Public Health, Seoul National University) ;
  • Kim, Moon-Kyung (Department of Environmental Health, School of Public Health, Seoul National University) ;
  • Zoh, Kyung-Duk (Department of Environmental Health, School of Public Health, Seoul National University)
  • 발행 : 2007.07.31

초록

본 연구는 PCP를 UV, $UV/H_2O_2$, $Fe^{2+}$, $Fe^{2+}/H_2O_2$, 그리고 $UV/Fe^{2+}/H_2O_2$의 공정을 이용하여 처리할 저 각각 공정의 처리효율을 비교하여 각 반응의 결합에 의한 개선 효과와 분해 기전을 규명한 연구이다. 실험의 결과 UV 반응에 $H_2O_2$의 첨가에 따라 약 13배 정도의 유사 일차 반응 속도의 증가를 보였으며, $Fe^{2+}$ 단독 반응에 비해 180 mM과 16 mM의 $H_2O_2$의 첨가는 각각 4배와 7.25배의 반응 속도 증가를 보였다. 또한 $Fe^{2+}/H_2O_2$의 반응에 비해 UV를 조사한 반응의 경우 약 3.1배의 반응 속도의 개선을 보였다. 이러한 반응속도의 증가는 각 반응에서 생성되는 OH 라디칼의 생성과 밀접한 관계가 있었다. $Fe^{2+}/H_2O_2$ 반응에서 일어나는 슬러지 침전 반응은 UV를 조사함으로서 상당부분 제거가 가능하였다.

This study was performed to compare and to examine the degradation efficiencies and degradation mechanism of pentachlorophenol(PCP) by UV, $UV/H_2O_2$, $Fe^{2+}$, $Fe^{2+}/H_2O_2$, and $UV/Fe^{2+}/H_2O_2$ processes. The pseudo-first order rate constant was compared in each process. The addition of $H_2O_2$ increased the rate constant by 13 times compared to the reaction with UV alone. The reaction rate in $Fe^{2+}$ reaction with PCP increased 4 times and 7.25 times by adding 180 mM $H_2O_2$ and 16 mM $H_2O_2$, respectively. Compared to that with $Fe^{2+}/H_2O_2$, the rate constant of the reaction with UV alone reaction increased 3.1 times. These results indicates the enhancement of reaction rate is closely related to the generation of OH radical. The degree of the iron sludge production observed in $Fe^{2+}/H_2O_2$ reaction was significantly reduced by irradiating UV in this process.

키워드

참고문헌

  1. Fukushima, M. and Tatsumi, K., 'Degradation pathways of pentachlorophenol by photo-fenton system in the presence of iron(III), humic ackd, and hydrogen peroxide,' Environ., Sci., Technol., 35, 1771-1778(2001) https://doi.org/10.1021/es001088j
  2. Passivirta, J., 'Organochlorine compounds in the environment,' Water Sci. Technol., 20, 119-129(1998)
  3. Mikesell, M. D. and Boyd, S. A., 'Enhancement of pentachlorophenol degradation in soil through induced anaerobiosis and bioaugmentation with anaerobic sewage sludge,' Environ. Sci. Technol., 22(12), 1411-1414(1988) https://doi.org/10.1021/es00177a003
  4. Laine, M. M., Ahtiainen, J., Wagman, N., and Jorgensen, K. S., 'Fate and toxicity of chlorophenols, polychlorinated Dibenzo-p-dioxins, and Dibenzofurans during composting of contaminated Sawmill Soil,' Environ. Sci. Technol., 31, 3244-3250(1997) https://doi.org/10.1021/es970233z
  5. Keith, L. H. and Telliard, W. A., 'Priority pollutants I-a perspective view,' Environ. Sci. Technol., 13(4), 416-23(1979) https://doi.org/10.1021/es60152a601
  6. Maloney, S. W., Manem, J., Mallevialle, J., and Fiessinger, F., 'Transformation of trace organic compounds in drinking water by enzymatic oxidative coupling,' Environ. Sci. Technol., 20, 249-253(1986) https://doi.org/10.1021/es00145a004
  7. Dec, J. and Bollag, J. M., 'Dehalogenation of chlorinated phenols during oxidative Coupling,' Environ. Sci. Technol., 28, 484-490(1994) https://doi.org/10.1021/es00052a022
  8. Pera_titus, M., Garcia-Molina, V., Banos, M. A., Gimenenez J., and EsplugA, S., 'Degradation of chlorophenols by means of advanced oxidation processes: a general review,' Appl. Catal. B, 47, 219-256(2004) https://doi.org/10.1016/j.apcatb.2003.09.010
  9. Bertelli, M. and Selli, E., 'Reaction paths and efficiency of photocatalysis on $TiO_{2}$ and of $H_{2}O_{2}$ photolysis in the degradation of 2-chlorophenol,' J. Hazard. Mater., 138, 6-52(2006)
  10. Ruppert, G. and Bauer, R., 'The photo-fenton reaction an effective photochemical wastewater treatment process,' J. Photochem, Photobiol. A, 73, 75-78(1993) https://doi.org/10.1016/1010-6030(93)80035-8
  11. Schwarzenbach, R. P., Gschwend, P. M., and Imboden, D. M., 'Environmental organic chemistry,' John Wiley & Sons, Inc., New York, pp. 436(1993)
  12. Benitez, F. J., Acero, J. L., Real, F. J., and Garcia, J., 'Kinetics of photo degradation and ozonation of pentachlorophenol,' Chemosphere, 51, 651-662(2003) https://doi.org/10.1016/S0045-6535(03)00153-X
  13. Legrinl, O., Oliveros, E., and Braun, A. M., 'Photochemical Processes for water treatment,' Chem. Rev., 93, 671-698(1993) https://doi.org/10.1021/cr00018a003
  14. Malik, P. K. and Sanyal, S. K., 'Kinetics of decolourisation of azo dyes in wastewater by UV/$H_{2}O_{2}$ process,' Sep. Pur. Technol., 36(3), 167-175(2004) https://doi.org/10.1016/S1383-5866(03)00212-0
  15. Zamaraev, K. I. and Parmon, V.N., 'Potential methods and prospectives of solar energy conversion via photocatalysis process,' Cata. Rev.-Sci. Eng., 22(2), 261-324(1980) https://doi.org/10.1080/03602458008066536
  16. Wayne, C. E. and Wayne, R. P., 'Photochemistry,' Oxford University Press, New York, 18-38(1996)
  17. Vernon, L. S. and David, 'Water Chemistry,' John Wiley & Sons, Inc., pp. 328(1980)
  18. Pignatello, J. J., 'Dark and photoassisted $Fe^{3+}$-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide,' Environ. Sci. Technol., 26(5), 944-951(1992) https://doi.org/10.1021/es00029a012
  19. Walling, C. and Goosen, A., 'Mechanism of the ferric ion catalyzed decomposition of hydrgen peroxide. Effect of organic substrates,' J. Am. Chem. Soc., 2987-2991(1973)