초음파가 잉어 Cyprinus carpio의 성장 및 단기적 행동에 미치는 영향

Effect of Ultrasound on the Growth and Short-term Behaviour of the Carp, Cyprinus carpio

  • 윤성진 (한국화학연구원 부설 안전성평가연구소) ;
  • 염동혁 (한국화학연구원 부설 안전성평가연구소) ;
  • 김우근 (한국화학연구원 부설 안전성평가연구소) ;
  • 윤홍길 (한국화학연구원 부설 안전성평가연구소) ;
  • 이성규 (한국화학연구원 부설 안전성평가연구소)
  • Yoon, Sung-Jin (Ecotoxicology Research Team, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology) ;
  • Yeom, Dong-Hyuk (Ecotoxicology Research Team, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology) ;
  • Kim, Woo-Keun (Ecotoxicology Research Team, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology) ;
  • Yun, Hong-Gil (Ecotoxicology Research Team, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology) ;
  • Lee, Sung-Kyu (Ecotoxicology Research Team, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology)
  • 발행 : 2007.06.30

초록

본 연구에서는 잉어의 생태 반응에 미치는 초음파(강도 31 dB re 1 ${\mu}Pa$, 주파수 $14{\sim}15$ kHz)의 영향을 구명하기 위하여 치사율, 체중변화, 건강성 평가 및 행동패턴을 관찰하였다. 실험기간 동안 초음파에 노출된 잉어 Cyprinus carpio의 치사율은 대조군을 포함하여 처리군 모두 5% 이하로 실험구 사이의 치사율은 뚜렷하게 구별되지 않았다(P>0.05). 각각의 실험구에서 측정한 실험어류의 평균 체중은 실험종료 시 대조군에 비해 처리군에서 약간 증가하는 경향을 보였으나 실험구간의 뚜렷한 차이는 보이지 않았다. 대조군과 고처리군의 일부 개체들은 가벼운 표피손상과 꼬리지느러미의 출혈 흔적이 관찰되었으나 눈, 지느러미, 기생충 감염, 흉선의 출혈 및 아가미에서는 이상증상이 전혀 관찰되지 않았다(P>0.05). 근거리에서 일시적으로 초음파를 발생시켰을 때 어류는 음원으로부터 회피하는 방향성 움직임을 보였으나 원거리에서 초음파에 노출된 잉어는 뚜렷한 행동변화를 보이지 않았다. 결론적으로 낮은 강도의 초음파에 노출된 어류는 초음파 발생에 따른 심각한 스트레스는 받지 않을 것으로 판단된다.

In this study, mortality, body wet weight, health assessment, and short-term behavioral mode were observed to determine the effects of ultrasound on the ecological response of the carp Cyprinus carpio. Mortality in the treatments was less than 5% during ultrasound exposure (31 dB re 1 ${\mu}Pa$, $14{\sim}15$ kHz) and there were no significant differences among the replicates (P>0.05). The treatments, based on mean wet weight, exhibited greater effect than the controls, but the magnitude of the differences was not large. Skins and tail fins of some test animals exposed to the controls and intensive treatment groups had light injury such as hemorrhaging, whereas, damages in other organs such as eyes, other fins, parasites, thymus, and gills were not observed (P>0.05). Sudden stimuli in low intensity at a short distance caused a directional avoidance of the fish from the sound. However, the carp exposed to ultrasound at the large scale field was not observed clear behavior changes. Overall results suggest that fish exposed to the low-intensity ultrasound had no serious stress during the tests.

키워드

참고문헌

  1. 김철기, 김광백, 차의영. 2003. 다층 페셉트론을 이용한 유해물질 유입에 따른 송사리의 행동 반응 분석 및 인식. 멀티미디어학회지 6(6): 1062-1070
  2. 윤종락, 이성욱, 안수용, 박지현, 배종우, 안명석. 2006. 수중소음이 어류에 미치는 영향. 2006년도 한국소음진동공학회 추계학술대회논문집 p.1-8
  3. Adams, S.M., A.M. Brown and R.W. Goede. 1993. A quantitative health assessment index for rapid evaluation of fish condition in the field. Transactions of American Fisheries Society 122: 63-73 https://doi.org/10.1577/1548-8659(1993)122<0063:AQHAIF>2.3.CO;2
  4. Almeida, P.R. 1996. Estuarine movement patterns of adult tin-lipped grey mullet, Liza ramada (Risso) (Pisces, Mutilidae), observed by ultrasonic tracking. Journal of Experimental Marine Biology and Ecology 202: 137-150 https://doi.org/10.1016/0022-0981(95)00162-X
  5. Astrup, J. 1999. Ultrasound detection in fish-a parallel to the sonar-mediated detection of bats by ultrasoundsensitive insects?. Comparative Biochemistry and Physiology Part A 124: 19-27 https://doi.org/10.1016/S1095-6433(99)00093-8
  6. Astrup, J. and B. Mohl. 1993. Detection of intense ultrasound by the cod Gadus morhua. Journal of Experimental Biology 182: 71-80
  7. Astrup, J. and B. Mohl. 1998. Discrimination between high and low repetition rates of ultrasonic pulses by the cod. Journal of Fish Biology 52: 205-208 https://doi.org/10.1111/j.1095-8649.1998.tb01562.x
  8. Dagorn, L., E. Josse and P. Bach. 2000. Individual differences in horizontal movements of yellowfin tuna (Thunnus albacares) in nearshore areas in French Polynesia, determined using ultrasonic telemetry. Aquatic Living Resources 13(4): 193-202 https://doi.org/10.1016/S0990-7440(00)01063-9
  9. Dunning, D.J., Q.E. Ross, P. Geoghegan, J.J. Reichle, J.K. Menezes and J.K. Watson. 1992. Alewives avoid highfrequency sound. North American Journal of Fisheries Management 12: 407-416 https://doi.org/10.1577/1548-8675(1992)012<0407:AAHFS>2.3.CO;2
  10. Egli, D.P. and R.C. Babcock. 2004. Ultrasonic tracking reveals multiple behavioural modes of snapper (Pagrus auratus) in a temperate no-take marine reserve. ICES Journal of Marine Science 61: 1137-1143 https://doi.org/10.1016/j.icesjms.2004.07.004
  11. Ghaedian, R., J.N. Coupland, E.A. Decker and D.J. McClements. 1998. Ultrasonic determination of fish composition. Journal of Food Engineering 35: 323-337 https://doi.org/10.1016/S0260-8774(98)00027-2
  12. Jadot, C., M. Ovidio and J. Voss. 2002. Diel activity of Sarpa salpa (Sparidae) by ultrasonic telemetry in a Posidonia Oceanica meadow of Corsica (Mediterranean Sea). Aquatic Living Resources 15(6): 343-350 https://doi.org/10.1016/S0990-7440(02)01193-2
  13. Kim, W.S., S.J. Yoon, H.T. Moon and T.W. Lee. 2002. Effects of water temperature changes on the endogenous and exogenous rhythms of oxygen consumption in glass eels Anguilla japonica. Marine Ecology Progress Series 243: 209-216 https://doi.org/10.3354/meps243209
  14. Kim, W.S., S.J. Yoon, J.W. Kim, J.A. Lee and T.W. Lee. 2006. Metabolic response under different salinity and temperature conditions for glass eel Anguilla japonica. Marine Biology 149: 1209-1215 https://doi.org/10.1007/s00227-006-0293-5
  15. Kraus, S.D., A.J. Read, A. Solow, K. Baldwin, T. Spradlin, E. Anderson and J. Williamson. 1997. Acoustic alarms reduce propoise mortality. Nature 388: 525 https://doi.org/10.1038/41451
  16. Kwak, I.S., T.S. Chon, H.M. Kang, N.I. Chung, JS. S.C. Kim, S.K. Lee and Y.S. Kim. 2002. Pattern recognition of the movement tracks of medaka (Oryzias latipes) in response to sub-lethal treatments of an insecticide by using artificial neural networks. Environmental Pollution 120: 671-681 https://doi.org/10.1016/S0269-7491(02)00183-5
  17. Lee, S.H., H.K. Pak and T.S. Chon. 2006. Dynamics of prey-flock escaping behavior in response to predator's attack. Journal of Theoretical Biology 240: 250-259 https://doi.org/10.1016/j.jtbi.2005.09.009
  18. Lee, S.H., H.K. Pak, H.S. Wi, T.S. Chon and T. Matsumoto. 2004. Growth dynamics of domain pattern in a threetrophic population model. Physica 334A: 233-242
  19. Mann, D.A., Z. Lu and A.N. Popper. 1997. A clupeid fish can detect ultrasound. Nature 389-341
  20. McCauley, R.D., J. Fewtrell and A.N. Popper. 2003. High intensity anthropogenic sound damages fish ears. Journal of the Acoustical Society of America 113(1): 638-642 https://doi.org/10.1121/1.1527962
  21. Navot, N., E. Kimmel and R.R. Avtalion. 2004. Enhancement of antigen uptake and antibody production in goldfish (Carassius auratus) following bath immunization and ultrasound treatment. Vaccine 22: 2660-2666 https://doi.org/10.1016/j.vaccine.2003.10.043
  22. NIWA, 1998. Marine fish (Rhombosolea plebeia). Acute toxcity test protocol. National Institute of Water and Atmospheric Research 1-29
  23. OECD. 1993. OECD Guidelines for Testing of Chemicals, 203 'Fish, Acute Toxicity Test (Adopted: July 17, 1992)'
  24. Offutt, G.C. 1968. Auditory response in the goldfish. Journal of Auditory Research 8: 391-400
  25. Park, Y.S., I.S. Kwak, T.S. Chon, J.K. Kim and S.E. Jorgensen. 2001. Implementation of artificial neural networks in patterning and prediction of exergy in response to temporal dynamics of benthic macroinvertebrate communities in streams. Ecological Modelling 146: 143-157 https://doi.org/10.1016/S0304-3800(01)00302-7
  26. Popper, A.N., R.R. Fay, C. Platt and O. Sand. 2003. Sound detection mechanisms and capabilities of teleost, p. 338. In: Sensory Processing in Aquatic Environments (S.P. Collin and N.J. Marshall, eds). Springer-Verlag, New York
  27. Popper, A.N., D.T.T. Plachta, D.A. Mann and D. Higgs. 2004. Response of clupeid fish to ultrasound: a review. ICES Journal of Marine Science 61: 1057-1061 https://doi.org/10.1016/j.icesjms.2004.06.005
  28. US EPA. 2002. Methods for measuring the acute toxicity of effluents and receiving water to freshwater and marine organisms. United States Environment Protection Agency 1-122
  29. Wilson, B. and L.M. Dill. 2002. Pacific herring respond to simulated odontocete echolocation sounds. Canadian Journal of Fisheries and Aquatic Sciences 59: 542-553 https://doi.org/10.1139/f02-029
  30. Yoon, S.J., C.K. Kim, J.G. Myoung and W.S. Kim. 2003. Comparison of oxygen consumption patterns between wild and cultured black rockfish Sebastes schlegeli. Fisheries Science 69: 43-49 https://doi.org/10.1046/j.1444-2906.2003.00586.x
  31. Zhou, Y.C., H. Huang, J. Wang, B. Zhang and Y.Q. Su. 2002. Vaccination of the grouper, Epinephalus awoara, against vibriosis using the ultrasonic technique. Aquaculture 203: 229-238 https://doi.org/10.1016/S0044-8486(01)00634-2