DOI QR코드

DOI QR Code

Directed Evolution of Beta-galactosidase from Escherichia coli into Beta-glucuronidase

  • Xiong, Ai-Sheng (College of Horticulture, Nanjing Agricultural University) ;
  • Peng, Ri-He (Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences) ;
  • Zhuang, Jing (College of Horticulture, Nanjing Agricultural University) ;
  • Liu, Jin-Ge (College of Horticulture, Nanjing Agricultural University) ;
  • Xu, Fang (College of Horticulture, Nanjing Agricultural University) ;
  • Cai, Bin (College of Horticulture, Nanjing Agricultural University) ;
  • Guo, Zhao-Kui (Heilongiiang Tobacco Research Institute) ;
  • Qiao, Yu-Shan (College of Horticulture, Nanjing Agricultural University) ;
  • Chen, Jian-Min (College of Bioscience and Biotechnology, Yangzhou University) ;
  • Zhang, Zhen (College of Horticulture, Nanjing Agricultural University) ;
  • Yao, Quan-Hong (Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences)
  • Published : 2007.05.31

Abstract

In vitro directed evolution through DNA shuffling is a powerful molecular tool for creation of new biological phenotypes. E. coli $\beta$-galactosidase and $\beta$-glucuronidase are widely used, and their biological function, catalytic mechanism, and molecular structures are well characterized. We applied an in vitro directed evolution strategy through DNA shuffling and obtained five mutants named YG6764, YG6768, YG6769, YG6770 and YG6771 after two rounds of DNA shuffling and screening, which exhibited more $\beta$-glucuronidase activity than wild-type $\beta$-galactosidase. These variants had mutations at fourteen nucleic acid sites, resulting in changes in ten amino acids: S193N, T266A, Q267R, V411A, D448G, G466A, L527I, M543I, Q626R and Q951R. We expressed and purified those mutant proteins. Compared to the wild-type protein, five mutant proteins exhibited high $\beta$-glucuronidase activity. The comparison of molecular models of the mutated and wildtype enzymes revealed the relationship between protein function and structural modification.

Keywords

References

  1. Baik, S. H., Ide, T., Yoshida, H., Kagami, O. and Harayama, S. (2003) Significantly enhanced stability of glucose dehydrogenase by directed evolution. Appl. Microbiol. Biotechnol. 61, 329-335. https://doi.org/10.1007/s00253-002-1215-1
  2. Castle, L. A., Siehl, D. L., Gorton, R., Patten, P. A., Chen, Y. H., Bertain, S., Cho, H. J., Duck, N., Wong, J., Liu, D. and Lassner, M. W. (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304, 1151-1154. https://doi.org/10.1126/science.1096770
  3. Chirumamilla, R. R., Muralidhar, R., Marchant, R. and Nigam, P. (2001) Improving the quality of industrially important enzymes by directed evolution. Mol. Cell Biochem. 224, 159-168. https://doi.org/10.1023/A:1011904405002
  4. Crameri, A., Whitehorn, E. A., Tate, E. and Stemmer, W. P. (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14, 315-319. https://doi.org/10.1038/nbt0396-315
  5. Dixon, D. P., McEwen, A. G., Lapthorn, A. J. and Edwards, R. (2003) Forced evolution of a herbicide detoxifying glutathione transferase. J. Biol. Chem. 278, 23930-23935. https://doi.org/10.1074/jbc.M303620200
  6. Flores, H. and Ellington, A. D. (2002) Increasing the thermal stability of an oligomeric protein, beta-glucuronidase. J. Mol. Biol. 315, 325-337. https://doi.org/10.1006/jmbi.2001.5223
  7. Fradkov, A. F., Chen, Y., Ding, L., Barsova, E. V., Matz, M. V. and Lukyanov, S. A. (2000) Novel fluorescent protein from Discosoma coral and its mutants possesses a unique far-red fluorescence. FEBS Lett. 479, 127-130. https://doi.org/10.1016/S0014-5793(00)01895-0
  8. Geddie, M. L. and Matsumura, I. (2004) Rapid evolution of betaglucuronidase specificity by saturation mutagenesis of an active site loop. J. Biol. Chem. 279, 26462-26468. https://doi.org/10.1074/jbc.M401447200
  9. Henrissat, B. (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280, 309-316. https://doi.org/10.1042/bj2800309
  10. Huber, R. E., Gupta, M. N. and Khare, S. K. (1994) The active site and mechanism of the beta-galactosidase from Escherichia coli. Int. J. Biochem. 26, 309-318. https://doi.org/10.1016/0020-711X(94)90051-5
  11. Jacobson, R. H., Zhang, X. J., DuBose, R. F. and Matthews, B. W. (1994) Three-dimensional structure of beta-galactosidase from E. coli. Nature 369, 761-766. https://doi.org/10.1038/369761a0
  12. Jefferson, R. A., Kavanaugh, T. A. and Bevan, M. W. (1987) GUS fusions: $\beta$-glucuronidase as a sensitive and versatile gene fusion marker for higher plants. EMBO J. 6, 3901-3907.
  13. Juers, D. H., Huber, R. E. and Matthews, B. W. (1999) Structural comparisons of TIM barrel proteins suggest functional and evolutionary relationships between $\beta$-galactosidase and other glycohydrolases. Protein Sci. 8, 122-136. https://doi.org/10.1110/ps.8.1.122
  14. Lassner, M. and Bedbrook, J. (2001) Directed molecular evolution in plant improvement. Curr. Opin. Plant Biol. 4, 152-156. https://doi.org/10.1016/S1369-5266(00)00152-7
  15. Matsumura, I. and Ellington, A. D. (1996) DNA shuffling brightens prospects for GFP. Nat. Biotechnol. 14, 366. https://doi.org/10.1038/nbt0396-366
  16. Matsumura, I. and Ellington, A. D. (2001) In vitro evolution of beta-glucuronidase into a beta-galactosidase proceeds through non-specific intermediates. J. Mol. Biol. 305, 331-339. https://doi.org/10.1006/jmbi.2000.4259
  17. Matsumura, I., Wallingford, J. B., Surana, N. K., Vize, P. D. and Ellington, A. D. (1999) Directed evolution of the surface chemistry of the reporter enzyme beta-glucuronidase. Nat. Biotechnol. 17, 696-701. https://doi.org/10.1038/10910
  18. Matthews, B. W. (2005) The structure of E. coli beta-galactosidase. C. R. Biol. 328, 549-556. https://doi.org/10.1016/j.crvi.2005.03.006
  19. Miki, B. and McHugh, S. (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J. Biotechnol. 107, 193-232. https://doi.org/10.1016/j.jbiotec.2003.10.011
  20. Nam, S. H., Oh, K. H., Kim, G. J. and Kim, H. S. (2003) Functional tuning of a salvaged green fluorescent protein variant with a new sequence space by directed evolution. Protein Eng. 16, 1099-1105. https://doi.org/10.1093/protein/gzg146
  21. Otten, L. G. and Quax, W. J. (2005) Directed evolution: selecting today's biocatalysts. Biomol. Eng. 22, 1-9. https://doi.org/10.1016/j.bioeng.2005.02.002
  22. Parikh, M. R. and Matsumura, I. (2005) Site-saturation mutagenesis is more efficient than DNA shuffling for the directed evolution of beta-fucosidase from beta-galactosidase. J. Mol. Biol. 352, 621-628. https://doi.org/10.1016/j.jmb.2005.07.020
  23. Peng, R. H., Xiong, A. S. and Yao, Q. H. (2006) A direct and efficient PAGE-mediated overlap extension PCR method for gene multiple-site mutagenesis. Appl. Microbiol. Biotechnol. 73, 234-240. https://doi.org/10.1007/s00253-006-0583-3
  24. Rowe, L. A., Geddie, M. L., Alexander, O. B. and Matsumura, I. (2003) A comparison of directed evolution approaches using the beta-glucuronidase model system. J. Mol. Biol. 332, 851-860. https://doi.org/10.1016/S0022-2836(03)00972-0
  25. Sambrook, J. and Russell, D. W. (2001) Molecular Cloning; A laboratory Mannual. (Cold Spring Harbor laboratory Press, cold Spring Harbor, New York.
  26. Stemmer, W. P. (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389-391. https://doi.org/10.1038/370389a0
  27. Whalen, R. G., Kaiwar, R., Soong, N. W. and Punnonen, J. (2001) DNA shuffling and vaccines. Curr. Opin. Mol. Ther. 3, 31-36.
  28. Xiong, A. S., Yao, Q. H., Peng, R. H., Chen, J. M., Li, X. and Fan, H. Q. (2002) Molecular evolution of beta-glucuronidase in vitro: obtaining thermotolerant GUS gene. Yi Chuan Xue Bao 29, 1034-1040.
  29. Xiong, A. S., Yao, Q. H., Peng, R. H., Li, X., Fan, H. Q., Guo, M. J. and Zhang, S. L. (2004a) Isolation, characterization, molecular cloning of the cDNA encoding a novel phytase from Aspergillus niger 113 and high expression in Pichia pastoris. J. Biochem. Mol. Biol. 37, 282-291. https://doi.org/10.5483/BMBRep.2004.37.3.282
  30. Xiong, A. S., Yao, Q. H., Peng, R. H., Li, X., Fan, H. Q., Cheng, Z. M. and Li, Y. (2004b) A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucleic Acids Res. 32, 98. https://doi.org/10.1093/nar/gnh094
  31. Xiong, A. S., Yao, Q. H., Peng, R. H., Duan, H., Li, X., Fan, H. Q., Cheng, Z. M. and Li, Y. (2006) PCR-based accurate synthesis of long DNA sequences. Nat. Prot. 1, 791-797. https://doi.org/10.1038/nprot.2006.103
  32. Xiong, A. S., Peng, R. H., Liu, J. G., Zhuang, J., Qiao, Y. S., Xu, F., Cai, B., Zhang, Z., Chen, J. M. and Yao, Q. H. (2007) High efficiency and throughput system in directed evolution in vitro of reporter gene. Appl. Microbiol. Biotechnol. 74, 160-168. https://doi.org/10.1007/s00253-006-0659-0
  33. Zhang, J. H., Dawes, G. and Stemmer, W. P. (1997) Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc. Natl. Acad. Sci. USA 94, 4504-4509 https://doi.org/10.1073/pnas.94.9.4504
  34. Zhao, H., Chockalingam, K. and Chen, Z. (2002) Directed evolution of enzymes and pathways for industrial biocatalysis. Curr. Opin. Biotechnol. 13, 104-110. https://doi.org/10.1016/S0958-1669(02)00291-4

Cited by

  1. Advances in directed molecular evolution of reporter genes vol.32, pp.2, 2012, https://doi.org/10.3109/07388551.2011.593503
  2. Directed evolution of a beta-galactosidase from Pyrococcus woesei resulting in increased thermostable beta-glucuronidase activity vol.77, pp.3, 2007, https://doi.org/10.1007/s00253-007-1182-7
  3. Recombinant β-galactosidases – Past, present and future: A mini review vol.81, 2012, https://doi.org/10.1016/j.molcatb.2012.04.012
  4. Designing of a novel β-galactosidase for production of functional oligosaccharides vol.243, pp.6, 2017, https://doi.org/10.1007/s00217-016-2813-y
  5. Genetic engineering techniques for lactic acid bacteria: construction of a stable shuttle vector and expression vector for β-glucuronidase vol.36, pp.2, 2014, https://doi.org/10.1007/s10529-013-1363-7
  6. Synthetic biology: An emerging research field in China vol.29, pp.6, 2011, https://doi.org/10.1016/j.biotechadv.2011.06.008