DOI QR코드

DOI QR Code

Molecular Characterization of a Transient Expression Gene Encoding for 1-Aminocyclopropane-1-carboxylate Synthase in Cotton (Gossypium hirsutum L.)

  • Wang, Xia (State Key Laboratory of Crop Biology, Shandong Agricultural University) ;
  • Zhang, Ying (State Key Laboratory of Crop Biology, Shandong Agricultural University) ;
  • Zhang, Jiedao (State Key Laboratory of Crop Biology, Shandong Agricultural University) ;
  • Cheng, Cheng (State Key Laboratory of Crop Biology, Shandong Agricultural University) ;
  • Guo, Xingqi (State Key Laboratory of Crop Biology, Shandong Agricultural University)
  • Published : 2007.09.30

Abstract

Ethylene performs an important function in plant growth and development. 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), the key enzyme involved in ethylene biosynthesis, has been the focus of most ethylene studies. Here, a cotton ACS gene referred to as Gossypium hirsutum ACS1 (GhACS1), was isolated. The full-length cDNA of GhACS1 encodes for a 476-amino acid protein which harbors seven conserved regions, 11 invariant amino acid residues, and the PLP binding active site, all of which characterize ACC synthases. Alignment analysis showed that GhACS1 shared a high degree of identity with other known ACC synthases from different species. Two introns were detected in the genomic DNA sequence, and the results of Southern blot analysis suggested that there might be a multi-gene family encoding for ACC synthase in cotton. From the phylogenetic tree constructed with 24 different kinds of ACC synthases, we determined that GhACS1 falls into group II, and was closely associated with the wound-inducible ACS of citrus. The analysis of the 5' flanking region of GhACS1 revealed a group of putative cis-acting elements. The results of expression analysis showed that GhACS1 displayed its transient expression nature after wounding, abscisic acid (ABA), and $CuCl_2$ treatments. These results indicate that GhACS1, which was transiently expressed in response to certain stimuli, may be involved in the production of ethylene for the transmission of stress signals.

Keywords

References

  1. Arteca, J. M. and Arteca, R. N. (1999) A multi-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase (ACS6) in mature Arabidopsis leaves. Plant Mol. Biol. 39, 209-219. https://doi.org/10.1023/A:1006177902093
  2. Bailey, B. A., Avni, A., Li, N., Matoo, A. K. and Anderson, J. D. (1993) Nucleotide sequence of the Nicotiana tabacum cv Xanthi gene encoding 1-aminocyclopropane-1-carboxylate synthase. Plant Physiol. 100, 1615-1616. https://doi.org/10.1104/pp.100.3.1615
  3. Chae, H. S., Faure, F. and Kieber, J. J. (2003) The eto1, eto2 and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 15, 545-559. https://doi.org/10.1105/tpc.006882
  4. Creelman, R. A. and Mullet, J. E. (1997) Oligosaccharins, brassionlides and jamonates: nontraditional regulators of plant growth, development and gene expression. Plant Cell 9, 1211-1223. https://doi.org/10.1105/tpc.9.7.1211
  5. Dong, J. G., Kim, W. T., Yip, W. K., Thompson, G. A., Li, L., Bennett, A. B. and Yang, S. F. (1991). Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit. Planta 185, 38-45.
  6. Farmer, E. E., Johnson, R. R. and Ryan, C. A. (1992) Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol. 98, 995-1002. https://doi.org/10.1104/pp.98.3.995
  7. Gallie, D. R. and Young, T. E. (2004) The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize. Mol. Gen. Genomics 271, 267-281. https://doi.org/10.1007/s00438-004-0977-9
  8. Ge, L., Liu, J. Z., Wong, W. S., Hsiao, W. L. W., Chong, K., Xu, Z. K., Yang, S. F., Kung, S. D. and Li, N. (2000) Identification of a novel multiple environmental factor-responsive 1-aminocyclopropane-1-carboxylate synthase gene, NT-ACS2, from tobacco. Plant Cell Environ. 23, 1169-1182. https://doi.org/10.1046/j.1365-3040.2000.00618.x
  9. Grierson, D. and Covey, S. (1988) Plant Mol. Biol. Glasgow, Blackie.
  10. Hidalgo, M. S. P., Tecson-Mendoza, E. M., Laurena, A. C. and Botella, J. R. (2005) Hybrid 'Sinta' Papaya exhibits unique ACC synthase 1 cDNA isoforms. J. Biochem. Mol. Biol. 38, 320-327. https://doi.org/10.5483/BMBRep.2005.38.3.320
  11. Huang, P. L., Parks, J. E., Rottmann, W. H. and Theologis, A. (1991) Two genes encoding 1-aminocyclopropane-1-carboxylate synthase in zucchini (Cucurbita pepo) are clustered and similar but differentially regulated. Proc. Natl. Acad. Sci. USA 88, 7021-7025. https://doi.org/10.1073/pnas.88.16.7021
  12. Iwai, T., Miyasaka, A., Seo, S. and Ohashi, Y. (2006) Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiol. 142, 1202-1215. https://doi.org/10.1104/pp.106.085258
  13. Johnson, P. R. and Ecker, J. R. (1998). The ethylene gas signal transduction pathway: A molecular perspective. Annu. Rev. Genet. 32, 227-254. https://doi.org/10.1146/annurev.genet.32.1.227
  14. Kende, H. (1993) Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 283-370. https://doi.org/10.1146/annurev.pp.44.060193.001435
  15. Leon, J., Rojo, E., Titarenko, E. and Sanchez-Serrano, J. J. (1998) Jasmonic acid-dependent and -independent wound signal transduction pathways are differentially regulated by $Ca^{2+}/calmodulin$ in Arabidopsis thaliana. Mol. Gen. Genet. 258, 412-419. https://doi.org/10.1007/s004380050749
  16. Li, N. and Mattoo, A. K. (1994) Deletion of the carboxyl-terminal region of 1-aminocyclopropane-1-carboxylate acid synthase, a key protein in the biosynthesis of ethylene, results in catalytically hyperactive, monomeric enzyme. J. Biol. Chem. 269, 6908-6917.
  17. Li, N., Parsons, B. L., Liu, D. and Mattoo, A. K. (1992) Accumulation wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines. Plant Mol. Biol. 18, 477-478. https://doi.org/10.1007/BF00040664
  18. Li, X. B., Fan, X. P., Wang, X. L., Cai, L. and Yang, W. C. (2005) The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17, 859-875. https://doi.org/10.1105/tpc.104.029629
  19. Lincoln, J. E., Campbell, A. D., Oetiker, J., Rottmann, W. H., Oeller, P. W., Shen, N. F. and Theologis, A. (1993) LE-ACS4, a fruit ripening and wound-induced 1-aminocyclopropane-1-carboxylate synthase gene of tomato (Lycopersicon esculentum), expression in Escherichia coli, structural characterization, expression characteristics, and phylogenetic analysis. J. Biol. Chem. 268, 19422-19430.
  20. Liu, D. R., Li, N., Dube, S., Kalinsky, A., Herman, E. and Mattoo, A. K. (1993) Molecular characterization of a rapidly and transiently wound-induced soybean (Glycine max L) gene encoding 1-aminocyclopropane-1-carboxylate synthase. Plant Cell Physiol. 34, 1121-1157.
  21. Murphy, A. M., Gilliland, A., Wong, C. E., West, J., Singh, D. P. and Carr, J. P. (2001) Signal transduction in resistance to plant viruses. Eur. J. Plant Pathol. 107, 121-128. https://doi.org/10.1023/A:1008732123834
  22. Nakajima, N., Mori, H., Yamazaki, K. and Imaseki, H. (1990) Molecular cloning and sequence of a complementary DNA encoding 1-aminocyclopropane-1-carboxylate synthase induced by tissue wounding. Plant Cell Physiol. 31, 1021-1029.
  23. Olson, D. C., White, J. A., Edelman, L., Harkins, R. N. and Kende, H. (1991) Differential expression of two genes for 1-aminocyclopropane-1-carboxylate acid synthase in tomato fruits. Proc. Natl. Acad. Sci. USA 88, 5340-5344. https://doi.org/10.1073/pnas.88.12.5340
  24. Pearce, G., Strydom, D., Johnson, S. and Ryan, C. A. (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253, 895-898. https://doi.org/10.1126/science.253.5022.895
  25. Pena-Cortes, H., Sanchez-Serrano, J., Mertens, R., Willmitzer, L. and Prat, S. (1989) Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. Pro. Natl. Acad. Sci. USA 86, 9851-9855. https://doi.org/10.1073/pnas.86.24.9851
  26. Rottmann, W. H., Peter, G. F., Oeller, P. W., Keller, J. A., Shen, N. F., Nagy, B. P., Taylor, L. P., Campbell, A. D. and Theologis, A. (1991) 1-aminocyclopropane-1-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J. Mol. Biol. 22, 937-961.
  27. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual., 2nd ed., Cold Spring Harbor Laboratory Press, New York. USA.
  28. Sato, T. and Theologis, A. (1989) Cloning of the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Pro. Natl. Acad. Sci. USA 86, 6621-6625. https://doi.org/10.1073/pnas.86.17.6621
  29. Schlagnhaufer, C. D., Arteca, R. N. and Pell, E. J. (1997) Sequential expression of two 1-aminocyclopropane-1-carboxylate synthase genes in response to biotic and abiotic stresses in potato (Solanum tuberosum L.) leaves. Plant Mol. Biol. 35, 683-688. https://doi.org/10.1023/A:1005857717196
  30. Scott, O. R. and Arnold, J. B. (1988) Extraction of DNA from plant tissues. Plant Mol. Biol. Manual. Kluwer Academic Publishers A6, 1-11.
  31. Tarun, A. S. and Theologis, A. (1998) Complementation analysis of mutants of 1-aminocyclopropane-1-carboxylate synthase reveals the enzyme is a dimmer with shared active sites. J. Biol. Chem. 273, 12509-12514. https://doi.org/10.1074/jbc.273.20.12509
  32. Titarenko, E., Rojo, E., Leon, J. and Sanchez-Serrano, J. J. (1997) Jasmonic acid-dependent and -independent signaling pathways control wound-induced gene activation in Arabidopsis thaliana. Plant Physiol. 115, 817-826. https://doi.org/10.1104/pp.115.2.817
  33. Vogel, J. P., Woeste, K. E., Theologis, A. and Kieber, J. J. (1998b) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Pro. Natl. Acad. Sci. USA 95, 4766-4771. https://doi.org/10.1073/pnas.95.8.4766
  34. Wang, K. L. C., Li, H. and Ecker, J. R. (2002) Ethylene biosynthesis and signaling network. The Plant Cell 14, S131-S151. https://doi.org/10.1105/tpc.001768
  35. Watanabe, T. and Sakai, S. (1998) Effects of active oxygen species and methyl jasmonate on expression of the gene for a wound-inducible 1-aminocyclopropane-1-carboxylate synthase in winter squash (Cucurbita maxima). Planta 206, 570-576. https://doi.org/10.1007/s004250050434
  36. White, M. F., Vasquez, J., Yang, S. F. and Kirsch, J. F. (1994) Expression of apple 1-aminocyclopropane-1-carboxylate synthase in Escherichia coli: Kinetic characterization of wild-type and active-site mutant forms. Pro. Natl. Acad. Sci. USA 91, 12428-12432. https://doi.org/10.1073/pnas.91.26.12428
  37. Wong, W.S., Ning, W., Xu, P.L., Kung, S.D., Yang, S.F. and Li, N. (1999) Identification of two chilling-regulated 1-amino-cyclopropane-1-carboxylate synthase genes from citrus (Citrus sinensis Osbeck) fruit. Plant Mol. Biol. 41, 587-600. https://doi.org/10.1023/A:1006369016480
  38. Yamagami, T., Tsuchisaka, A., Yamada, K., Haddon, W. F., Harden, L. A. and Theologis, A. (2003) Biochemical diversity among the 1-aminocyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J. Biol. Chem. 278, 49102-49112. https://doi.org/10.1074/jbc.M308297200
  39. Yamaguchi, Y., Itoh, Y., Takeda, Y. and Yamazaki, K. (1998) TATA sequence requirements for the initiation of transcription for an RNA polymerase II in vitro transcription system from Nicotiana tabacum. Plant Mol. Biol. 38, 1247-1252. https://doi.org/10.1023/A:1006056128129
  40. Yang, S. F. and Hoffman, N. E (1984) Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35, 155-189. https://doi.org/10.1146/annurev.pp.35.060184.001103
  41. Yip, W. K., Dong, J. G., Kenny, J. W., Thompson, G. A. and Yang, S. F. (1990) Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase. Proc. Natl. Acad. Sci. USA 87, 7930-7934. https://doi.org/10.1073/pnas.87.20.7930
  42. Yoon, I. S., Park, D. H., Mori, H., Imaseki, H. and Kang, B. G. (1999) Characterization of an auxin-inducible 1-aminocyclopropane-1-carboxylate synthase gene, VR-ACS6, of mungbean (Vigna radiate (L.) Wilczek) and hormonal interaction on the promoter activity in transgenic tobacco. Plant Cell Physiol. 40, 431-438 https://doi.org/10.1093/oxfordjournals.pcp.a029559
  43. Zarembinski, T. I. and Theologis, A. (1994) Ethylene biosynthesis and action: a case of conservation. Plant Mol. Biol. 26, 1579-1597. https://doi.org/10.1007/BF00016491
  44. Zhou, H. Q., Wang, H. W., Zhu, K., Sui, S. F., Xu, P. L., Yang, S. F. and Li, N. (1999) The multiple roles of conserved arginine 286 of 1-aminocyclopropane-1-carboxylate synthase. Coenzyme binding, substrate binding and beyond. Plant Physiol. 121, 1-7. https://doi.org/10.1104/pp.121.1.1

Cited by

  1. Ethylene Production and Expression of Two Ethylene Biosynthetic Genes in Senescing Flowers of Hosta ventricosa vol.32, pp.2, 2014, https://doi.org/10.7235/hort.2014.12223
  2. NgRDR1, an RNA-dependent RNA polymerase isolated from Nicotiana glutinosa, was involved in biotic and abiotic stresses vol.47, pp.5, 2009, https://doi.org/10.1016/j.plaphy.2008.12.017