DOI QR코드

DOI QR Code

Binding Characteristics to Mosquito-larval Midgut Proteins of the Cloned Domain II-III Fragment from the Bacillus thuringiensis Cry4Ba Toxin

  • Moonsom, Seangdeun (Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus) ;
  • Chaisri, Urai (Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University) ;
  • Kasinrerk, Watchara (Department of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University) ;
  • Angsuthanasombat, Chanan (Laboratory of Molecular Biophysics and Structural Biochemistry, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus)
  • Published : 2007.09.30

Abstract

Receptor binding plays an important role in determining host specificity of the Bacillus thuringiensis Cry $\delta$-endotoxins. Mutations in domains II and III have suggested the participation of certain residues in receptor recognition and insect specificity. In the present study, we expressed the cloned domain II-III fragment of Cry4Ba and examined its binding characteristics to mosquito-larval midgut proteins. The 43-kDa Cry4Ba-domain II-III protein over-expressed in Escherichia coli as inclusion bodies was only soluble when carbonate buffer, pH 10.0 was supplemented with 4M urea. After renaturation via stepwise dialysis and subsequent purification, the refolded domain II-III protein, which specifically reacts with anti Cry4Ba-domain III monoclonal antibody, predominantly exists as a $\beta$-sheet structure determined by circular dichroism spectroscopy. In vitro binding analysis to both histological midgut tissue sections and brush border membrane proteins prepared from susceptible Aedes aegypti mosquito-larvae revealed that the isolated Cry4Ba-domain II-III protein showed binding functionality comparable to the 65-kDa full-length active toxin. Altogether, the data present the 43-kDa Cry4Ba fragment comprising domains II and III that was produced in isolation was able to retain its receptor-binding characteristics to the target larval midgut proteins.

Keywords

References

  1. Alzate, O., You, T., Claybon, M., Osorio, C., Curtiss, A. and Dean, D. H. (2006) Effects of disulfide bridges in domain I of Bacillus thuringiensis Cry1Aa ${\delta}-endotoxin$ on ion-channel formation in biological membranes. Biochemistry 45, 13597-13605. https://doi.org/10.1021/bi061474z
  2. Angsuthanasombat, C., Chungjatupornchai, W., Kertbundit, S., Settasatian, C., Luxananil, P., Settasatien, C., Wilairat, P. and Panyim, S. (1987) Cloning and expression of 130-kDa mosquito-larvicidal delta-endotoxin gene of Bacillus thuringiensis var. israelensis in Escherichia coli. Mol. Gen. Genet. 208, 384-389. https://doi.org/10.1007/BF00328128
  3. Angsuthanasombat, C., Uawithya, P., Leetachewa, S., Pornwiroon, W., Ounjai, P., Kerdcharoen, T., Kartzenmeier, G. R. and Panyim, S. (2004) Bacillus thuringiensis Cry4A and Cry4B mosquito-larvicidal protein: homology based 3D model and implications for toxin activity. J. Biochem. Mol. Biol. 37, 304-313. https://doi.org/10.5483/BMBRep.2004.37.3.304
  4. Boonserm, P., Davis, P., Ellar, D. J. and Li, J. (2005) Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J. Mol. Biol. 348, 363-382. https://doi.org/10.1016/j.jmb.2005.02.013
  5. Boonserm, P., Min, M., Angsuthanasombat, C. and Lescar, J. (2006) Structure of the functional form of the mosquitolarvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstorm resolution. J. Bacteriol. 188, 3391-3401. https://doi.org/10.1128/JB.188.9.3391-3401.2006
  6. Buttcher, V., Ruhlmann, A. and Cramer, F. (1990) Improved single-stranded DNA producing expression vectors for protein manipulation in Escherichia coli. Nucleic Acids Res. 18, 1075. https://doi.org/10.1093/nar/18.4.1075
  7. Buzdin, A. A., Revina, L. P., Kostina, L. I., Zalunin, I. A. and Chestukhina, G. G. (2002) Interaction of 65- and 62-kD proteins from the apical membranes of the Aedes aegypti larvae midgut epithelium with Cry4B and Cry11A endotoxins of Bacillus thuringiensis. Biochemistry (Moscow) 67, 540-546. https://doi.org/10.1023/A:1015594127636
  8. Chayaratanasin, P., Moonsom, S., Sakdee, S., Chaisri, U., Katzenmeier, G. and Angsuthanasombat, C. (2007) High level of soluble expression in Escherichia coli and characterisation of the cloned Bacillus thuringiensis Cry4Ba domain III fragment. J. Biochem. Mol. Biol. 40, 58-64. https://doi.org/10.5483/BMBRep.2007.40.1.058
  9. de Barros Moreira Beltrao, H. and Silva-Filha, M. H. N. L. (2007) Interaction of Bacillus thuringiensis svar. israelensis Cry toxins with binding sites from Aedes aegypti (Diptera: Culicidae) larvae midgut. FEMS Microbiol. Lett. 266, 163-169. https://doi.org/10.1111/j.1574-6968.2006.00527.x
  10. de Maagd, R. A., Kwa, M. S., van der, K. H., Yamamoto, T., Schipper, B., Vlak, J. M., Stiekema, W. J. and Bosch, D. (1996) Domain III substitution in Bacillus thuringiensis deltaendotoxin CryIA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl. Environ. Microbiol. 62, 1537-1543.
  11. de Maagd, R. A., Bravo, A. and Crickmore, N. (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17, 193-199. https://doi.org/10.1016/S0168-9525(01)02237-5
  12. de Maagd, R. A., Weemen-Hendriks, M., Stiekema, W. and Bosch, D. (2000) Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids. Appl. Environ. Microbiol. 66, 1559-1563. https://doi.org/10.1128/AEM.66.4.1559-1563.2000
  13. Derbyshire, D. J., Ellar, D. J. and Li, J. (2001) Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine. Acta Crystallogr. 57, 1938-1944.
  14. Fernandez, L. E., Perez, C., Segovia, L., Rodriguez, M. H., Gill, S. S., Bravo, A. and Soberon, M. (2005) Cry11Aa toxin from Bacillus thuringiensis binds its receptor in Aedes aegypti mosquito larvae through loop ${\alpha}-8$ of domain II. FEBS Lett. 579, 3508-3514. https://doi.org/10.1016/j.febslet.2005.05.032
  15. Fernandez, L. E., Aimanova, K. G., Gill, S. S., Bravo, A. and Soberon, M. (2006) A GPI-anchored alkaline phophatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae. Biochem. J. 394, 77-84. https://doi.org/10.1042/BJ20051517
  16. Flores, H., Soberon, X., Sánchez, J. and Bravo, A. (1997) Isolated domain II and III from the Bacillus thuringiensis Cry1Ab ${\delta}-endotoxin$ binds to lepidopteran midgut membranes. FEBS Lett. 414, 313-318. https://doi.org/10.1016/S0014-5793(97)01015-6
  17. Galitsky, N., Cody, V., Wojtczak, A., Ghosh, D., Luft, J. R., Pangborn, W. and English, L. (2001). Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr. D. Biol. Crystallogr. 57, 1101-1109. https://doi.org/10.1107/S0907444901008186
  18. Gomez, I., Pardo-Lopez, L., Munoz-Garay, C., Fernandez, L. E., Perez, C., Sanchez, J., Soberon, M. and Bravo, A. (2007) Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Peptides 28, 169-173. https://doi.org/10.1016/j.peptides.2006.06.013
  19. Grochulski, P., Masson, L., Borisova, S., Pusztai-Carey, M., Schwartz, J. L., Brousseau, R. and Cygler, M. (1995) Cry1A(a) insecticidal toxin crystal structure and channel formation. J. Mol. Biol. 254, 447-464. https://doi.org/10.1006/jmbi.1995.0630
  20. Jurat-Fuentes, J.-L. and Adang, M. J. (2001) Importance of Cry1 delta-endotoxin domain II loops for binding specificity in Heliothis virescens (L.). Appl. Environ. Microbiol. 67, 323-329. https://doi.org/10.1128/AEM.67.1.323-329.2001
  21. Knowles, B. H. (1994) Mechanism of action of Bacillus thuringiensis insecticidal delta-endotoxins. Adv. Insect Physiol. 24, 275-308. https://doi.org/10.1016/S0065-2806(08)60085-5
  22. Leetachewa, S., Katzenmeier, G. and Angsuthanasombat, C. (2006) Novel preparation and characterisation of the ${\alpha}4-loop-{\alpha}5$ membrane perturbing peptide from the Bacillus thuringiensis Cry4Ba toxin. J. Biochem. Mol. Biol. 39, 270-277. https://doi.org/10.5483/BMBRep.2006.39.3.270
  23. Li, J. D., Carroll, J. and Ellar, D. J. (1991) Crystal structure of insecticidal ${\delta}-endotoxin$ from Bacillus thuringiensis at 2.5 ${\AA}$ resolution. Nature 353, 815-821. https://doi.org/10.1038/353815a0
  24. Likitvivatanavong, S., Katzenmeier, G. and Angsuthanasombat, C. (2006) Asn183 in ${\alpha}5$ is essential for oligomerisation and toxicity of the Bacillus thuringiensis Cry4Ba toxin. Arch. Biochem. Biophys. 445, 46-55. https://doi.org/10.1016/j.abb.2005.11.007
  25. Lobley, A., Whitmore, L. and Wallace, B. A. (2002) DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics 18, 211-212. https://doi.org/10.1093/bioinformatics/18.1.211
  26. Masson, L., Tabashnik, B. E., Liu, Y. B., Brousseau, R. and Schwartz, J. L. (1999) Helix 4 of the Bacillus thuringiensis Cry1Aa toxin lines the lumen of the ion channel. J. Biol. Chem. 274, 31996-32000. https://doi.org/10.1074/jbc.274.45.31996
  27. Masson, L., Tabashnik, B. E., Mazza, A., Prefontaine, G., Potvin, L., Brousseau, R. and Schwartz, J. L. (2002) Mutagenic analysis of a conserved region of domain III in the Cry1Ac toxin of Bacillus thuringiensis. Appl. Environ. Microbiol. 68, 194-200. https://doi.org/10.1128/AEM.68.1.194-200.2002
  28. Morse, R. J., Yamamoto, T. and Stroud, R. M. (2001) Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure (Camb) 9, 409-417. https://doi.org/10.1016/S0969-2126(01)00601-3
  29. Puntheeranurak, T., Uawithya, P., Potvin, L., Angsuthanasombat, C. and Schwartz, J. L. (2004) Ion channels formed in planar lipid bilayers by the diptheran-specific Cry4Ba Bacillus thuringiensis and its ${\alpha}1-{\alpha}5$ fragment. Mol. Membr. Biol. 21, 67-74. https://doi.org/10.1080/09687680310001625792
  30. Rausell, C., Pardo-Lopez, L., Sanchez, J., Munoz-Garay, C., Morera, C., Soberon, M. and Bravo, A. (2004) Unfolding events in the water-soluble monomeric Cry1Ab toxin during transition to oligomeric pre-pore and membrane-inserted pore channel. J. Biol. Chem. 279, 55168-55175. https://doi.org/10.1074/jbc.M406279200
  31. Ravoahangimalala, O. and Charles, J. F. (1995) In vitro binding of Bacillus thuringiensis var. israelensis individual toxins to midgut cells of Anopheles gambiae larvae (Diptera: Culicidae). FEBS Lett. 362, 111-115. https://doi.org/10.1016/0014-5793(95)00220-4
  32. Ruiz, L. M., Segura, C., Trujillo, J. and Orduz, S. (2004) In vivo binding of the Cry11Bb toxin of Bacillus thuringiensis subsp. medellin to the midgut of mosquito larvae (Diptera: Culicidae). Mem. Inst. Oswaldo Cruz 99, 73-79. https://doi.org/10.1590/S0074-02762004000100013
  33. Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R. and Dean, D. H. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775-806.
  34. Sramala, I., Leetachewa, S., Krittanai, C., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2001) Charged residues screening in helix 4 of the Bacillus thuringiensis Cry4B toxin reveals one critical residue for larvicidal activity. J. Biochem. Mol. Biol. Biophys. 5, 219-225.
  35. Tiewsiri, K. and Angsuthanasombat, C. (2007) Structurally conserved aromaticity of $Tyr^{249}\;and\;Phe^{264}$ in helix 7 is important for toxicity of the Bacillus thuringiensis Cry4Ba toxin. J. Biochem. Mol. Biol. 40, 163-171. https://doi.org/10.5483/BMBRep.2007.40.2.163
  36. Tuntitippawan, T., Boonserm, P., Katzenmeier, G. and Angsuthanasombat, C. (2005) Targeted mutagenesis of loop residues in the receptor-binding domain of the Bacillus thuringiensis Cry4Ba toxin affects larvicidal activity. FEMS Microbiol. Lett. 242, 325-332. https://doi.org/10.1016/j.femsle.2004.11.026
  37. Whalon, M. E. and Wingerd, B. A. (2003) Bt: mode of action and use. Arch. Insect Biochem. Physiol. 54, 200-211. https://doi.org/10.1002/arch.10117
  38. Whitmore, L. and Wallace, B. A. (2002) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucl. Acids Res. 35, 1343-1353.
  39. Wolfersberger, M., Luethy, P., Maurer, A., Parentlt P., Sacchi, F. V., Giordana, B. and Hanozet, G. M. (1987) Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). Comp. Biochem. Physiol. B 80, 301-308.
  40. Yamagiwa, M., Esaki, M., Otake, K., Inagaki, M., Komano, T., Amachi, T. and Sakai, H. (1999) Activation process of dipteran-specific insecticidal protein produced by Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 65, 3464-3469.

Cited by

  1. Efficient transcription of the larvicidal <i>cry</i>4<i>Ba</i> gene from <i>Bacillus thuringiensis</i> in transgenic chloroplasts of the green algal <i>Chlamydomonas reinhardtii</i> vol.03, pp.04, 2012, https://doi.org/10.4236/abb.2012.34052
  2. Bacillus thuringiensis Cry4Ba toxin employs two receptor-binding loops for synergistic interactions with Cyt2Aa2 vol.435, pp.2, 2013, https://doi.org/10.1016/j.bbrc.2013.04.078
  3. Bacterial larvicides for vector control: mode of action of toxins and implications for resistance vol.23, pp.10, 2013, https://doi.org/10.1080/09583157.2013.822472
  4. Functional expression in insect cells of glycosylphosphatidylinositol-linked alkaline phosphatase from Aedes aegypti larval midgut: A Bacillus thuringiensis Cry4Ba toxin receptor vol.41, pp.3, 2011, https://doi.org/10.1016/j.ibmb.2010.11.006
  5. Amino acids at N- and C-termini are required for the efficient production and folding of a cytolytic γ-endotoxin from Bacillus thuringiensis vol.41, pp.11, 2008, https://doi.org/10.5483/BMBRep.2008.41.11.820
  6. Expression of cadherin, aminopeptidase N and alkaline phosphatase genes in Cry1Ac-susceptible and Cry1Ac-resistant strains of Plutella xylostella (L.) vol.136, pp.7, 2012, https://doi.org/10.1111/j.1439-0418.2011.01683.x
  7. Two conformational states of the membrane-associated Bacillus thuringiensis Cry4Ba δ-endotoxin complex revealed by electron crystallography: Implications for toxin-pore formation vol.361, pp.4, 2007, https://doi.org/10.1016/j.bbrc.2007.07.086
  8. Loop residues of the receptor binding domain ofBacillus thuringiensisCry11Ba toxin are important for mosquitocidal activity vol.583, pp.12, 2009, https://doi.org/10.1016/j.febslet.2009.05.020
  9. Functional assembly of 260-kDa oligomers required for mosquito-larvicidal activity of the Bacillus thuringiensis Cry4Ba toxin vol.68, 2015, https://doi.org/10.1016/j.peptides.2014.11.013
  10. Aquatic effect duration study of Cry4 toxin with immunoassay andAedes aegyptilarval biotest vol.34, pp.sup1, 2012, https://doi.org/10.1080/01650424.2012.643062
  11. Amino acid residues in the N-terminal region of the BinB subunit of Lysinibacillus sphaericus binary toxin play a critical role during receptor binding and membrane insertion vol.114, pp.1, 2013, https://doi.org/10.1016/j.jip.2013.05.008
  12. Transcriptome differences between Cry1Ab resistant and susceptible strains of Asian corn borer vol.16, pp.1, 2015, https://doi.org/10.1186/s12864-015-1362-2
  13. Transcriptome and Proteome Alternation With Resistance to Bacillus thuringiensis Cry1Ah Toxin in Ostrinia furnacalis vol.10, pp.1664-042X, 2019, https://doi.org/10.3389/fphys.2019.00027