DOI QR코드

DOI QR Code

Susceptibility of Anthonomus grandis (Cotton Boll Weevil) and Spodoptera frugiperda (Fall Armyworm) to a Cry1Ia-type Toxin from a Brazilian Bacillus thuringiensis Strain

  • Published : 2007.09.30

Abstract

Different isolates of the soil bacterium Bacillus thuringiensis produce multiple crystal (Cry) proteins toxic to a variety of insects, nematodes and protozoans. These insecticidal Cry toxins are known to be active against specific insect orders, being harmless to mammals, birds, amphibians, and reptiles. Due to these characteristics, genes encoding several Cry toxins have been engineered in order to be expressed by a variety of crop plants to control insectpests. The cotton boll weevil, Anthonomus grandis, and the fall armyworm, Spodoptera frugiperda, are the major economically devastating pests of cotton crop in Brazil, causing severe losses, mainly due to their endophytic habit, which results in damages to the cotton boll and floral bud structures. A cry1Ia-type gene, designated cry1Ia12, was isolated and cloned from the Bt S811 strain. Nucleotide sequencing of the cry1Ia12 gene revealed an open reading frame of 2160 bp, encoding a protein of 719 amino acid residues in length, with a predicted molecular mass of 81 kDa. The amino acid sequence of Cry1Ia12 is 99% identical to the known Cry1Ia proteins and differs from them only in one or two amino acid residues positioned along the three domains involved in the insecticidal activity of the toxin. The recombinant Cry1Ia12 protein, corresponding to the cry1Ia12 gene expressed in Escherichia coli cells, showed moderate toxicity towards first instar larvae of both cotton boll weevil and fall armyworm. The highest concentration of the recombinant Cry1Ia12 tested to achieve the maximum toxicities against cotton boll weevil larvae and fall armyworm larvae were 230 ${\mu}g/mL$ and 5 ${\mu}g/mL$, respectively. The herein demonstrated insecticidal activity of the recombinant Cry1Ia12 toxin against cotton boll weevil and fall armyworm larvae opens promising perspectives for the genetic engineering of cotton crop resistant to both these devastating pests in Brazil.

Keywords

References

  1. Andow, D. A., Lovei, G. L. and Arpaia, S. (2006) Ecological risk assessment for Bt crops. Nat. Biotechnol. 24, 749-751. https://doi.org/10.1038/nbt0706-749
  2. Betz, F. S., Hammond, B. G. and Fuchs, R. L. (2000) Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regul. Toxicol. Pharmacol. 32, 156-173. https://doi.org/10.1006/rtph.2000.1426
  3. Bravo, A., Sarabia, S., Lopez, L., Ontiveros, H., Abarca, C., Ortiz, A., Ortiz, M., Lina, L., Villalobos, F. J. and Pena, G. (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl. Environ. Microbiol. 64, 4965-4972.
  4. Broderick, N. A., Raffa, K. F. and Handelsman, J. (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. 103, 151-196. https://doi.org/10.1111/j.1749-6632.1963.tb53695.x
  5. Ceron, J., Ortiz, A., Quintero, R., Guereca, L. and Bravo, A. (1995) Specific PCR primers directed to identify cryI and cryII genes within a Bacillus thuringiensis strain collection. Appl. Environ. Microbiol. 61, 3826-3831.
  6. Chattopadhyay, A., Bhatnagar, N. B. and Bhatnagar , R. (2004) Bacterial insecticidal toxins. Crit. Rev. Microbiol. 30, 33-54. https://doi.org/10.1080/10408410490270712
  7. Christou, P., Capell, T., Kohli, A., Gatehouse, J. A. and Gatehouse, A. M. (2006) Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci. 11, 302-308. https://doi.org/10.1016/j.tplants.2006.04.001
  8. Choi, S. K., Shin, B. S., Kong, E. M., Rho, H. M. and Park, S. H. (2000). Cloning of a new Bacillus thuringiensis Cry1I-type crystal protein. Curr. Microbiol. 41, 65-69. https://doi.org/10.1007/s002840010093
  9. Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J. and Dean, D. H. (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807-813
  10. de Maagd, R. A., Bravo, A. and Crickmore, N. (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17, 193-199. https://doi.org/10.1016/S0168-9525(01)02237-5
  11. de Maagd, R. A., Bravo, A., Berry, C., Crickmore, N. and Schnepf, H. E. (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu. Rev. Genet. 37, 409-433. https://doi.org/10.1146/annurev.genet.37.110801.143042
  12. Donovan, W. P., Donovan, J. C. and Slaney, A. C. (2000) Bacillus thuringiensis CryET33 and CryET34 proteins - having activity against Coleoptera insects, particularly boll weevil, red flour beetle and Japanese beetle. U.S. Patent Number US2006051822-A1.
  13. Doyle, J. J. and Doyle, J. L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19, 11-15.
  14. Estela, A., Escriche, B. and Ferre, J. (2004) Interaction of Bacillus thuringiensis toxins with larval midgut binding sites of Helicoverpa armigera (Lepidoptera: Noctuidae). Appl. Environ. Microbiol. 70, 1378-1384. https://doi.org/10.1128/AEM.70.3.1378-1384.2004
  15. Ferre, J. and Van Rie, J. (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 47, 501-533. https://doi.org/10.1146/annurev.ento.47.091201.145234
  16. Gleave, A. P., Williams, R. and Hedges, R. J. (1993) Screening by polymerase chain reaction of Bacillus thuringiensis serotypes for the presence of CryV-like insecticidal protein genes and characterization of a cryV gene cloned from Bacillus thuringiensis subsp kurstaki. Appl. Environ. Microbiol. 59, 1683-1687.
  17. Hamilton, K. A., Pyla, P. D., Breeze, M., Olson, T., Li, M., Robinson, E., Gallagher, S. P., Sorbet, R. and Chen, Y. (2004) Bollgard II cotton: compositional analysis and feeding studies of cottonseed from insect-protected cotton (Gossypium hirsutum L.) producing the Cry1Ac and Cry2Ab2 proteins. J. Agric. Food Chem. 52, 6969-6976. https://doi.org/10.1021/jf030727h
  18. Haynes, J. W. and Smith, J. W. (1992) Longevity of laboratoryreared boll-weevils (Coleoptera, Curculionidae) offered honey bee-collected pollen and plants unrelated to cotton. J. Entomol. Sci. 27, 366-374. https://doi.org/10.18474/0749-8004-27.4.366
  19. He, K. L., Wang, Z. Y., Zhou, D. R., Wen, L. P., Song, Y. Y. and Yao, Z. Y. (2003) Evaluation of transgenic Bt corn for resistance to the Asian corn borer (Lepidoptera: Pyralidae). J. Econ. Entomol. 96, 935-940. https://doi.org/10.1603/0022-0493-96.3.935
  20. Herrnstadt, C., Soares, G. G., Wilcox, E. R. and Edwards, D. L. (1986) A new strain of Bacillus-thuringiensis with activity against coleopteran insects. Bio-Technology 4, 305-308. https://doi.org/10.1038/nbt0486-305
  21. Hilder, V. A. and Boulter, D. (1999) Genetic engineering of crop plants for insect resistance - a critical review. Crop Prot. 18, 177-191. https://doi.org/10.1016/S0261-2194(99)00028-9
  22. Hofmann, C., Vanderbruggen, H., Hofte, H., Van Rie, J., Jansens, S. and Van Mellaert, H. (1988) Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. PNAS 85, 7844-7848. https://doi.org/10.1073/pnas.85.21.7844
  23. Knowles, B. (1994) Mechanism of action of Bacillus thuringiensis insecticidal d-endotoxins. Adv. Insect Physiol. 24, 275-308. https://doi.org/10.1016/S0065-2806(08)60085-5
  24. Koo, B. T., Park, S. H., Choi, S. K. Shin, B. S. , Kim, J. I. and Yu, J. H. (1995) Cloning of a novel crystal protein gene Cry1k from Bacillus thuringiensis subsp Morrisoni. FEMS Microbiol. Lett. 134, 159-164. https://doi.org/10.1111/j.1574-6968.1995.tb07931.x
  25. Kostichka, K., Warren, G. W., Mullins, M., Mullins, A. D., Craig, J. A., Koziel, M. G. and Estruch, J. J. (1996) Cloning of a CryV-type insecticidal protein gene from Bacillus thuringiensis: the CryV-encoded protein is expressed early in stationary phase. J. Bacteriol. 178, 2141-2144. https://doi.org/10.1128/jb.178.7.2141-2144.1996
  26. Laemmli, U. K. (1970) Cleavage of structural proteins during assembly of head of Bacteriophage-T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  27. Liu, K. Y., Zheng, B. L., Hong, H. Z., Jiang, C. F., Peng, R., Peng, J. X., Yu, Z. H., Zheng, J. and Yang, H. (2004) Characterization of cultured insect cells selected by Bacillus thuringiensis crystal toxin. In Vitro Cell. Dev. Biol. Anim. 40, 312-317. https://doi.org/10.1290/0404032.1
  28. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randal, R. J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275.
  29. Martins, E. S. (2005a) Clonagem, expressao e analise da patalogia de proteinas Cry, derivadas de Bacillus thuringiensis, em insetos-praga. Master Degree Dissertation, Universidade de Brasilia, Brasilia, Brazil.
  30. Martins, E., Praca, L., Dumas, V., Sone, E., Waga, I., Gomes, A. C. M., Falcao, R. and Monnerat, R. G. (2005b) Caracterizacao de estirpes de Bacillus thuringiensis toxicas ao bicudo do algodoeiro. Boletim de Pesquisa e Desenvolvimento Embrapa 83, 1-19.
  31. Monnerat, R. G. D., Oliveira-Neto, O. B., Nobre, S. D., Silva-Werneck, J. O. and Grossi de Sa, M. F. (2000) Criacao massal do bicudo do algodoeiro Anthonomus grandis em laboratorio. Comunicado Tecnico/ Embrapa 46, 1-4.
  32. Praca, L. B., Batista, A. C., Martins, E. S., Siqueira, C. B., Dias, D. G. D., Gomes, A. C. M. M., Falcao, R. and Monnerat, R. G. (2004) Bacillus thuringiensis strains effective against insects of Lepidoptera, Coleoptera and Diptera orders. Pesqui. Agropecu. Bras. 39, 11-16. https://doi.org/10.1590/S0100-204X2004000100002
  33. Quezado, M. (2006) Toxinas cry: perspectivas para obtencao de algodao transgenico brasileiro. Master Degree Dissertation. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
  34. Sambrook, J. and Russel, D. W. (2001) Molecular Cloning - A Laboratory Manual, 3rd ed., Cold Spring Laboratory Press, New York, USA.
  35. Sasaki, J., Asano, S., Iizuka, T., Bando, H., Lay, B. W., Hastowo, S., Powell, G. K. and Yamamoto, T. (1996) Insecticidal activity of the protein encoded by the cryV gene of Bacillus thuringiensis kurstaki INA-02. Curr. Microbiol. 32, 195-200. https://doi.org/10.1007/s002849900035
  36. Schwartz, J. L., Garneau, L., Savaria, D., Masson, L., Brousseau, R. and Rousseau, E. (1993) Lepidopteran-specific crystal toxins from Bacillus thuringiensis form cation- and anion-selective channels in planar lipid bilayers. J. Membr. Biol. 132, 53-62.
  37. Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. and Dean, D. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775-806.
  38. Sekar, V., Held, B., Tippett, J., Amirhusin, B., Robeff, P., Wang, K. and Wilson, H. M. (1997) Biochemical and molecular characterization of the insecticidal fragment of CryV. Appl. Environ. Microbiol. 63, 2798-2801.
  39. Selvapandiyan, A., Reddy, V. S., Kumar, P., Tewari, K. K. and Bhatnagar, R. K. (1998) Transformation of Nicotiana tabacum with a native cry1Ia5 gene confers complete protection against Heliothis armigera. Molecular Breeding 4, 473-478. https://doi.org/10.1023/A:1009696027993
  40. Shin, B. S., Park, S. H., Choi, S. K., Koo, B. T., Lee, S. T. and Kim J. I. (1995) Distribution of CryV-type insecticidal protein genes in Bacillus-thuringiensis and cloning of cryY-type genes from Bacillus-thuringiensis Subsp kurstaki and Bacillus-thuringiensis Subsp entomocidus. Appl. Environ. Microbiol. 61, 2402-2407.
  41. Song, F. P., Zhang, J., Gu, A. X., Wu, Y., Han, L. L., He, K. L., Chen, Z. Y., Yao, J., Hu, Y. Q., Li, G. X. and Huang, D. F. (2003) Identification of cry1I-type genes from Bacillus thuringiensis strains and characterization of a novel cry1I-type gene. Appl. Environ. Microbiol. 69, 5207-5211. https://doi.org/10.1128/AEM.69.9.5207-5211.2003
  42. Tabashnik, B. E., Finson, N., Johnson, M. W. and Moar, W. J. (1993) Resistance to toxin from Bacillus thuringiensis sbsp. kurstaki causes minimal cross-resistance to B. thuringiensis subsp. aizawai in the diamondback moth Lepidopetera: Plutellida. Appl. Environ. Microbiol. 59, 1332-1335.
  43. Tabashnik, B. E., T. Malvar, Y. B. Liu, N. Finson, D. Borthakur, B. Y. S. Shin, S. H. Park, L. Masson, R. A. de Maagd, and D. Bosch. (1996) Cross-resistance of the diamondback moth indicates altered interactions with domain II of Bacillus thuringiensis toxins. Appl. Environ. Microbiol. 62, 2839-2844.
  44. Tabashnik, B. E., Liu, Y. B., Malvar, T., Heckel, D. G., Masson, L., Ballester, V. Granero, F., Mensua, J. L. and Ferre, J. (1997) Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. PNAS. 94, 12780-12785. https://doi.org/10.1073/pnas.94.24.12780
  45. Tailor, R., Tippett, J., Gibb, G., Pells, S., Pike, D., Jordan, L. and Ely, S. (1992) Identification and characterization of a novel Bacillus thuringiensis delta-endotoxin entomocidal to coleopteran and lepidopteran larvae. Mol. Microbiol. 6, 1211-1217. https://doi.org/10.1111/j.1365-2958.1992.tb01560.x
  46. Van Rie, J. (2000) Bacillus thuringiensis and its use in transgenic insect control technologiies. Int. J. Med. Microbiol. 290, 463-469. https://doi.org/10.1016/S1438-4221(00)80066-1

Cited by

  1. Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis) vol.11, pp.1, 2011, https://doi.org/10.1186/1472-6750-11-85
  2. Stable integration and expression of acry1Ia gene conferring resistance to fall armyworm and boll weevil in cotton plants vol.72, pp.8, 2016, https://doi.org/10.1002/ps.4184
  3. Transgenic Cotton Plants Expressing Cry1Ia12 Toxin Confer Resistance to Fall Armyworm (Spodoptera frugiperda) and Cotton Boll Weevil (Anthonomus grandis) vol.7, 2016, https://doi.org/10.3389/fpls.2016.00165
  4. Evaluation of Cytotoxic and Antimicrobial Effects of TwoBtCry Proteins on a GMO Safety Perspective vol.2014, 2014, https://doi.org/10.1155/2014/810490
  5. Cloning and expression of Bacillus thuringiensis cry1Ia in Escherichia coli and its insecticidal activity vol.8, pp.36, 2014, https://doi.org/10.5897/AJMR2014.7001
  6. Genes expressed in cotton (Gossypium hirsutum) buds isolated with a subtractive library vol.12, pp.1, 2013, https://doi.org/10.4238/2013.January.16.7
  7. Biotechnology and its configurations: GM cotton production on large and small farms in Argentina vol.35, pp.2, 2013, https://doi.org/10.1016/j.techsoc.2013.01.007
  8. Isolation and Characterization of Three New Promoters from Gossypium hirsutum that Show High Activity in Reproductive Tissues vol.32, pp.3, 2014, https://doi.org/10.1007/s11105-013-0674-0
  9. Investigation of insecticidal activity of rye α-amylase inhibitor gene expressed in transgenic tobacco (Nicotiana tabacum) toward cotton boll weevil (Anthonomus grandis) vol.98, pp.1, 2010, https://doi.org/10.1016/j.pestbp.2010.04.008
  10. Functional analysis of active site residues of Bacillus thuringiensis WB7 chitinase by site-directed mutagenesis vol.25, pp.12, 2009, https://doi.org/10.1007/s11274-009-0119-y
  11. Coleopteran-specific and putative novel cry genes in Iranian native Bacillus thuringiensis collection vol.102, pp.2, 2009, https://doi.org/10.1016/j.jip.2009.07.009
  12. Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants vol.6, pp.6, 2015, https://doi.org/10.1080/21655979.2015.1109755
  13. Short-Term Evaluation in Growing Rats of Diet ContainingBacillus thuringiensisCry1Ia12 Entomotoxin: Nutritional Responses and Some Safety Aspects vol.2010, 2010, https://doi.org/10.1155/2010/630267
  14. Risk assessment of Cry toxins of Bacillus thuringiensis on the predatory mites Euseius concordis and Neoseiulus californicus (Acari: Phytoseiidae) vol.59, pp.4, 2013, https://doi.org/10.1007/s10493-012-9620-3
  15. Promoter isolation and characterization ofGhAO-like1, aGossypium hirsutumgene similar to multicopper oxidases that is highly expressed in reproductive organs vol.59, pp.1, 2016, https://doi.org/10.1139/gen-2015-0055
  16. Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera) vol.112, pp.2, 2013, https://doi.org/10.1016/j.jip.2012.11.011
  17. Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil vol.15, pp.8, 2017, https://doi.org/10.1111/pbi.12694
  18. The Politics of Technological Upgrading: International Transfer to and Adaptation of GM Cotton in Argentina vol.59, 2014, https://doi.org/10.1016/j.worlddev.2013.10.023