DOI QR코드

DOI QR Code

Characterization and Mapping of the Bovine FBP1 Gene

  • Guo, H. (Laboratory of Molecular Biology and Bovine Breeding, Institute Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Liu, W-S. (Department of Animal Biotechnology, University of Agriculture, Biotechnology and Natural Resources, University of Nevada) ;
  • Takasuga, A. (Shirakawa Institute of Animal Genetics Odakura) ;
  • Eyer, K. (Department of Animal Biotechnology, University of Agriculture, Biotechnology and Natural Resources, University of Nevada) ;
  • Landrito, E. (Department of Animal Biotechnology, University of Agriculture, Biotechnology and Natural Resources, University of Nevada) ;
  • Xu, Shang-zhong (Laboratory of Molecular Biology and Bovine Breeding, Institute Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Gao, X. (Laboratory of Molecular Biology and Bovine Breeding, Institute Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Ren, H-Y. (Laboratory of Molecular Biology and Bovine Breeding, Institute Animal Science, Chinese Academy of Agricultural Sciences)
  • 투고 : 2006.12.04
  • 심사 : 2007.04.26
  • 발행 : 2007.09.01

초록

Fructose-1,6-bisphosphatase (FBP1) is a key regulatory enzyme of gluconeogenesis that catalyzes the hydrolysis of fructose-1,6-bisphosphate to generate fructose-6-phosphate and inorganic phosphate. Deficiency of fructose-1, 6-bisphosphatase is associated with fasting hypoglycemia and metabolic acidosis. The enzyme has been shown to occur in bacteria, fungi, plants and animals. The bovine FBP1 gene was cloned and characterized in this study. The full length (1,241 bp) FBP1 mRNA contained an open reading frame (ORF) encoding a protein of 338 amino acids, a 63 bp 5' untranslated region (UTR) and a 131 bp 3' UTR. The bovine FBP1 gene was 89%, 85%, 82%, 82% and 74% identical to the orthologs of pig, human, mouse, rat and zebra fish at mRNA level, and 97%, 96%, 94%, 93% and 91% identical at the protein level, respectively. This gene was broadly expressed in cattle with the highest level in testis, and the lowest level in heart. An intronic single nucleotide polymorphism (SNP) (A/G) was identified in the $5^{th}$ intron of the bovine FBP1 gene. Genotyping of 133 animals from four beef breeds revealed that the average frequency for allele A (A-base) was 0.7897 (0.7069-0.9107), while 0.2103 (0.0893-0.2931) for allele B (G-base). Our preliminary association study indicated that this SNP is significantly associated with traits of Average Daily Feed Intake (ADFI) and Carcass Length (CL) (p<0.01). In addition, the FBP1 gene was assigned on BTA8 by a hybrid radiation (RH) mapping method.

키워드

참고문헌

  1. El-Maghrabi, M. R., M. Gidh-Jain, L. R. Austin and S. J. Pilkis. 1993. Isolation of a human liver fructose-1,6-bisphosphatase cDNA and expression of the protein in Escherichia coli. Role of ASP-118 and ASP-121 in catalysis. J. Biol. Chem. 268:9466-9472
  2. El-Maghrabi, M. R., A. J. Lange, W. Jiang, K. Yamagata, M. Stoffel, J. Takeda, A. A. Fernald, M. M. Le Beau, G. I. Bell and L. Baker. 1995. Human fructose-1,6-bisphosphatase gene (FBP1): exon-intron organization, localization to chromosome bands 9q22.2-q22.3, and mutation screening in subjects with fructose-1,6-bisphosphatase deficiency. Genomics 27:520-525. https://doi.org/10.1006/geno.1995.1085
  3. El-Maghrabi, M. R., A. J. Lange, L. Kummel and S. J. Pilkis. 1991 The rat fructose-1,6-bisphosphatase gene. Structure and regulation of expression. J. Biol. Chem. 266:2115-2120
  4. El-Maghrabi, M. R., J. Pilkis, A. J. Marker, A. D. Colosia, G. D'Angelo, B. A. Fraser and S. J. Pilkis. 1988. cDNA sequence of rat liver fructose-1,6-bisphosphatase and evidence for down-regulation of its mRNA by insulin. Proc. Natl. Acad. Sci. USA. 85:8430-4843 https://doi.org/10.1073/pnas.85.22.8430
  5. Everts-van der, A. Wind, S. R. Kata, M. R. Band, M. Rebeiz, D. M. Larkin, R. E. Everts, C. A. Green, L. Liu. S. Natarajan, T. Goldammer, J. H. Lee, S. McKay, J. E. Womack and H. A. Lewin. 2004. A 1463 gene cattle-human comparative map with anchor points defined by human genome sequence coordinates. Genome Res. 14(7):1424-1437 https://doi.org/10.1101/gr.2554404
  6. Guan, H. P., B. Fan, K. Li, M. J. Zhu, M. Yerle and B. Liu. 2006. Sequence characterization, expression profile, chromosomal localization and polymorphism of the porcine SMPX gene. Asian-Aust. J. Anim. Sci. 19(7):931-936 https://doi.org/10.5713/ajas.2006.931
  7. Guo, H., W. S. Liu, A. Takasuga, K. Eyer, E. Landrito, S. Z. Xu, X. Gao and H. Y. Ren. 2006. Mapping of the CCK, PSMC2, PSMC4, PSMD1, CPB1and PSPH genes in cattle. Anim. Genet. 37(1):73-75 https://doi.org/10.1111/j.1365-2052.2005.01403.x
  8. Herzog, B., U. Wendel, A. A. Morris and K. Eschrich. 1999. Novel mutations in patients with fructose-1,6-bisphosphatase deficiency. J. Inherit. Metab. Disease 22:132-138 https://doi.org/10.1023/A:1005489617843
  9. Horecker, B. L., E. Melloni and S. Pontremoli. 1975. Fructose 1,6- bisphosphatase: properties of the neutral enzyme and its modification by proteolytic enzymes. Adv. Enzymol. Relat. Areas. Mol. Biol. 42:193-226
  10. Itoh, T., T. Watanabe, N. Ihara, P. Mariani, C. W. Beattie, Y. Sugimoto and A. A. Takasuga. 2005. Comprehensive radiation hybrid map of the bovine genome comprising 5593 loci. Genomics 85(4):413-424 https://doi.org/10.1016/j.ygeno.2004.12.007
  11. Kang, Hye Kyeong, Ji Ae Park, Kang Seok Seo, Sang Hoon Kim, Yun Jai Choi and Yang Soo Moon. 2006. Characteristics of structure and expression pattern of ADSF/resistin gene in korean native cattle Korea. Asian-Aust. J. Anim. Sci. 19(3):329-333 https://doi.org/10.5713/ajas.2006.329
  12. Kikawa, Y., M. Inuzuka, B. Y. Jin, S. Kaji, J. Koga, Y. Yamamoto, K. Fujisawa, I. Hata, A. Nakai, Y. Shigematsu, H. Mizunuma, A. Taketo, M. Mayumi and M. Sudo. 1997. Identification of genetic mutations in Japanese patients with fructose-1,6- bisphosphatase deficiency. Am. J. Hum. Genet. 61:852-861 https://doi.org/10.1086/514875
  13. Kikawa, Y., M. Inuzuka, T. Takano, Y. Shigematsu, A. Nakai, Y. Yamamoto, B. Y. Jin, J. Koga, A. Taketo and M. Sudo. 1994. cDNA sequences encoding human fructose 1,6-bisphosphatase from monocytes, liver and kidney: application of monocytes to molecular analysis of human fructose 1,6-bisphosphatase deficiency. Biochem. Biophys. Res. Commun. 199:687-693 https://doi.org/10.1006/bbrc.1994.1283
  14. Liu, W. S., K. Eyer, H. Yasue, B. Roelofs, H. Hiraiwa, T. Shimogiri, E. Landrito, J. Ekstrand, M. Treat, A. Rink, M. Yerle, D. Milan and C. W. Beattie. 2005. A 12,000-rad porcine radiation hybrid (IMNpRH2) panel refines the conserved synteny between SSC12 and HSA17. Genomics 86:731-738 https://doi.org/10.1016/j.ygeno.2005.08.006
  15. Majumder, G. C. 1977. Purification and characterization of a protein kinase modulator from rat mammary gland. Biochim. Biophys. Acta. 483:279-293 https://doi.org/10.1016/0005-2744(77)90056-0
  16. Marcus, F., I. Edelstein, I. Reardon and R. L. Heinrikson. 1982. Complete amino acid sequence of pig kidney fructose-1,6- bisphosphatase. Proc. Natl. Acad. Sci. USA 79:7161-7165 https://doi.org/10.1073/pnas.79.23.7161
  17. McNeill, D. C., J. R. Roche, B. P. McLachlan and C. R. Stockdale. 2002. Nutritional strategies for the prevention of hypocalcaemia at calving for dairy cows in pasture-based systems. Aust. J. Agric. Res. 53:755-770 https://doi.org/10.1071/AR01100
  18. Pan, P. W., S. H. Zhao, M. Yu, B. Liu, T. A. Xiong and K. Li. 2003. Identification of differentially expressed genes in the longissimus dorsi muscle tissue between duroc and erhualian pigs by mRNA differential display. Asian-Aust. J. Anim. Sci. 16:1066-1070 https://doi.org/10.5713/ajas.2003.1066
  19. Schonewille, J. T., A. T. Van, Klooster, H. Wouterse and A. C. Beynen. 1999. Hypocalcaemia induced by intravenous administration of disodium ethylenediaminotetraacetate and its effects on excretion of calcium in urine of cows fed a high chloride diet. J. Dairy Sci. 82:1317-1324 https://doi.org/10.3168/jds.S0022-0302(99)75355-5
  20. Skalecki, K., D. Rakus, J. R. Wisniewski, J. Kolodziej and A. Dzugaj. 1999. cDNA sequence and kinetic properties of human lung fructose(1, 6)bisphosphatase. Arch Biochem. Biophys. 365:1-9 https://doi.org/10.1006/abbi.1999.1120
  21. Solomon, D. H., M. C. Raynal, C. A. Tejwani and Y. E. Cayre. 1988. Activation of the fructose 1,6-bisphosphatase gene by 1,25-dihydroxyvitamin D3 during monocytic differentiation. Proc. Natl. Acad. Sci. USA. 85:6904-6908 https://doi.org/10.1073/pnas.85.18.6904
  22. Stein, S., T. Liehr and K. Eschrich. 2001. Characterization of the mouse liver fructose-1,6-bisphosphatase gene. Gene. 264:215- 224 https://doi.org/10.1016/S0378-1119(01)00325-0
  23. Tillmann, H., D. Bernhard and K. Eschrich. 2002. Fructose-1,6-bisphosphatase genes in animals. Gene. 291:57-66 https://doi.org/10.1016/S0378-1119(02)00627-3
  24. Tillmann, H., S. Stein, T. Liehr and K. Eschrich. 2000. Structure and chromosomal localization of the human and mouse muscle fructose-1,6-bisphosphatase genes. Gene. 247:241-253 https://doi.org/10.1016/S0378-1119(00)00079-2
  25. Woods, I. G., C. Wilson, B. Friedlander, P. Chang, D. K. Reyes, R. Nix, P. D. Kelly, F. Chu, J. H. Postlethwait and W. S. Talbot. 2005. The zebrafish gene map defines ancestral vertebrate chromosomes. Genome. Res. 15:1307-1314 https://doi.org/10.1101/gr.4134305