DOI QR코드

DOI QR Code

Differentially Expressed Genes under Cold Acclimation in Physcomitrella patens

  • Sun, Ming-Ming (College of Life Science, Capital Normal University) ;
  • Li, Lin-Hui (Department of Biology, China West Normal University) ;
  • Xie, Hua (Beijing AgroBiotechnology Research Center) ;
  • Ma, Rong-Cai (Beijing AgroBiotechnology Research Center) ;
  • He, Yi-Kun (College of Life Science, Capital Normal University)
  • Published : 2007.11.30

Abstract

Cold acclimation improves freezing tolerance in plants. In higher plants, many advances have been made toward identifying the signaling and regulatory pathways that direct the low-temperature stress response; however, similar insights have not yet been gained for simple nonvascular plants, such as bryophytes. To elucidate the pathways that regulate cold acclimation in bryophytes, we used two PCR-based differential screening techniques, cDNA amplified fragment length polymorphism (cDNA-AFLP) and suppression subtractive hybridization (SSH), to isolate 510 ESTs that are differentially expressed during cold acclimation in Physcomitrella patens. We used realtime RT-PCR to further analyze expression of 29 of these transcripts during cold acclimation. Our results show that cold acclimation in the bryophyte Physcomitrella patens is not only largely similar to higher plants but also displays distinct differences, suggests significant alteration during the evolution of land plants.

Keywords

References

  1. Agulnick, A. D., Taira, M., Breen, J. J., Tanaka, T., Dawid, I. B. and Westphal, H. (1996) Interactions of the LIM-domain-binding factor Ldb1 with LIM homeodomain proteins. Nature 384, 270-272. https://doi.org/10.1038/384270a0
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  3. Ashton, N. W., Cove, D. J. and Featherstone, D. R. (1979) The isolation and physiological analysis of mutants of the moss Physcomitrella patens, which over-produce gametophores. Planta 144, 437-442. https://doi.org/10.1007/BF00380119
  4. Bachem, W. B., Oomen, F. J. and Visser, G. F. (1998) Transcript Imaging with cDNA-AFLP: a step-by-step protocol. Plant Mol. Biol. Rep. 16, 157-173. https://doi.org/10.1023/A:1007468801806
  5. Bahn, S. C., Bae, M. S., Park, Y. B., Oh, S. I., Jeung, J. U., Bae, J. M., Chung, Y. S. and Shin, J. S. (2001) Molecular cloning and characterization of a novel low temperature-induced gene, blti2, from barley (Hordeum vulgare L.). Biochim. Biophy. Acta 1522, 134-137. https://doi.org/10.1016/S0167-4781(01)00317-7
  6. Barret, P., Brinkman, M., Dufour, P., Murigneux, A. and Beckert, M. (2004) Identification of candidate genes for in vitro androgenesis induction in maize. Theor. Appl. Genet. 109, 1660-1668. https://doi.org/10.1007/s00122-004-1792-8
  7. Bishop, G. J. and Koncz, C. (2002) Brassinosteroids and plant steroid hormone signaling. Plant Cell 14, 97-110. https://doi.org/10.1105/tpc.001461
  8. Cove, D. (2005) The moss Physcomitrella patens. Ann. Rev. Genet. 39, 339-358. https://doi.org/10.1146/annurev.genet.39.073003.110214
  9. Cove, D., Bezanilla, M., Harries, P. and Quatrano, R. (2006) Mosses as model systems for the study of metabolism and development. Annu. Rev. Plant Biol. 57, 497-520. https://doi.org/10.1146/annurev.arplant.57.032905.105338
  10. Feiler, H. S., Desprez, T., Santoni, V., Kronenberger, J., Caboche, M. and Traas, J. (1995) The higher plant Arabidopsis thaliana encodes a functional CDC48 homologue which is highly expressed in dividing and expanding cells. EMBO J. 14, 5626-5637.
  11. Feinberg, A. P. and Vogelstein, B. (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6-13. https://doi.org/10.1016/0003-2697(83)90418-9
  12. Fowler, S. and Thomashow, M. F. (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14, 1675-1690. https://doi.org/10.1105/tpc.003483
  13. Fujioka, S. and Sakurai, A. (1997) Brassinosteroids. Nat. Prod. Rep. 14, 1-10. https://doi.org/10.1039/np9971400001
  14. Gilmour, S. J., Sebolt, A. M., Salazar, M. P., Everard, J. D. and Thomashow, M. F. (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 124, 1854-1865. https://doi.org/10.1104/pp.124.4.1854
  15. Gilmour, S. J., Zarka, D. G., Stockinger, E. J., Salazar, M. P., Houghton, J. M. and Thomashow, M. F. (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 16, 433-442. https://doi.org/10.1046/j.1365-313x.1998.00310.x
  16. Hall, Q. and Cannon, M. C. (2002) The cell wall hydroxyproline-rich glycoprotein RSH Is essential for normal embryo development in Arabidopsis. Plant Cell 14, 1161-1172. https://doi.org/10.1105/tpc.010477
  17. He, J. X., Gendron, J. M., Yang, Y., Li, J. and Wang, Z. Y. (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA 99, 10185-10190. https://doi.org/10.1073/pnas.152342599
  18. Hitz, W. D., Carlson, T. J., Booth, J. J., Kinney, A. J., Stecca, K. L. and Yadav, N. S. (1994) Cloning of a higher-plant plastid $\omega$-6 fatty acid desaturase cDNA and Its expression in a Cyanobacterium. Plant Physiol. 105, 635-641. https://doi.org/10.1104/pp.105.2.635
  19. Khan, S., Situ, G., Decker, K. and Schmidt, C. J. (2003) GoFigure: automated gene $ontology^{TM}$ annotation. Bioinformatics 19, 2484-2485. https://doi.org/10.1093/bioinformatics/btg338
  20. Kinoshita, T., Cano-Delgado, A., Seto, H., Hiranuma, S., Fujioka, S., Yoshida, S. and Chory, J. (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433, 167-171. https://doi.org/10.1038/nature03227
  21. Knight, H., Trewavas, A. J. and Knight, M. R. (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8, 489-503. https://doi.org/10.1105/tpc.8.3.489
  22. Kobayashi, F., Takumi, S., Nakata, M., Ohno, R., Nakamura, T. and Nakamura, C. (2004) Comparative study of the expression profiles of the Cor/Lea gene family in two wheat cultivars with contrasting levels of freezing tolerance. Physiol. Plant. 120, 585-594. https://doi.org/10.1111/j.0031-9317.2004.0293.x
  23. Krishna, P. (2003) Brassinosteroid-mediated stress responses. J. Plant Growth Regul. 22, 289-297. https://doi.org/10.1007/s00344-003-0058-z
  24. Kroemer, K., Reski, R. and Frank, W. (2004) Abiotic stress response in the moss Physcomitrella patens: evidence for an evolutionary alteration in signaling pathways in land plants. Plant Cell Rep. 22, 864-870. https://doi.org/10.1007/s00299-004-0785-z
  25. Kubien, D. S., Von Caemmerer, S., Furbank, R. T. and Sage, R. F. (2003) C4 photosynthesis at low temperature. A study using transgenic plants with reduced amounts of Rubisco. Plant Physiol. 132, 1577-1585. https://doi.org/10.1104/pp.103.021246
  26. Latowski, D., Kruk, J., Burda, K., Skrzynecka-Jaskier, M., Kostecka- Gugala, A. and Strzalka, K. (2002) Kinetics of violaxanthin deepoxidation by violaxanthin de-epoxidase, a xanthophy cycle enzyme, is regulated by membrane fluidity in model lipid bilayers. Euro. J. Biochem. 269, 4656-4665. https://doi.org/10.1046/j.1432-1033.2002.03166.x
  27. Lee, B. H., Henderson, D. A. and Zhu, J. K. (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17, 3155-3175. https://doi.org/10.1105/tpc.105.035568
  28. Li, J., Nam, K. H., Vafeados, D. and Chory, J. (2001) BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiol. 127, 14-22. https://doi.org/10.1104/pp.127.1.14
  29. Lin, W. H., Ye, R., Ma, H., Xu , Z. H. and Xue, H. W. (2004) DNA chip-based expression profile analysis indicates involvement of the phosphatidylinositol signaling pathway in multiple plant responses to hormone and abiotic treatments. Cell Res. 14, 34-45. https://doi.org/10.1038/sj.cr.7290200
  30. Lindemann, P., Koch, A., Degenhardt, B., Hause, G., Grimm, B. and Papadopoulos, V. (2004) A novel Arabidopsis thaliana protein is a functional peripheral-type benzodiazepine receptor. Plant Cell Physiol. 45, 723-733. https://doi.org/10.1093/pcp/pch088
  31. Liu, N., Zhong, N. Q., Wang, G. L., Li, L. J., Liu, X. L., He, Y. K. and Xia, G. X. (2007) Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens. Planta 226, 827-838.
  32. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi- Shinozaki, K. and Shinozaki, K. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391-1406. https://doi.org/10.1105/tpc.10.8.1391
  33. Livingston, D. P. III. and Henson, C. A. (1998) Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat: responses to second-phase cold-hardening. Plant Physiol. 116, 403-408. https://doi.org/10.1104/pp.116.1.403
  34. McCarter, J. P., Mitreva, M. D., Martin, J., Dante, M., Wylie, T., Rao, U., Pape, D., Bowers, Y., Theising, B., Murphy, C. V., Kloek, A. P., Chiapelli, B. J., Clifton, S. W., Bird, D. M. and Waterston, R. H. (2003) Analysis and functional classification of transcripts from the nematode Meloidogyne incognita. Genome Biol. 4, 26-44. https://doi.org/10.1186/gb-2003-4-4-r26
  35. Minami, A., Nagao, M., Arakawa, K., Fujikawa, S. and Takezawa, D. (2003) Abscisic acid-induced freezing tolerance in the moss Physcomitrella patens is accompanied by increased expression of stress-related genes. J. Plant Physiol. 160, 475-483. https://doi.org/10.1078/0176-1617-00888
  36. Minami, A., Nagao, M., Ikegami, K., Koshiba, T., Arakawa, K., Fujikawa, S. and Takezawa, D. (2005) Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Planta 220, 414-423. https://doi.org/10.1007/s00425-004-1361-z
  37. Miyoshi, K., Ahn, B. O., Kawakatsu, T., Ito, Y., Itoh, J. I., Nagato, Y. and Kurata, N. (2004) PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proc. Nat. Acad. Sci. USA 101, 875-880. https://doi.org/10.1073/pnas.2636936100
  38. Murata, N., Ishizaki-Nishizawa, O., Higashi, S., Hayashi, H., Tasaka, Y. and Nishida, I. (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356, 710-713. https://doi.org/10.1038/356710a0
  39. Nishiyama, T., Fujita, T., Shin, T., Seki, M., Nishide, H., Uchiyama, I., Kamiya, A., Carninci, P., Hayashizaki, Y., Shinozaki, K., Kohara, Y. and Hasebe, M. (2003) Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: Implication for land plant evolution. Proc. Nat. Acad. Sci. USA 100, 8007-8012. https://doi.org/10.1073/pnas.0932694100
  40. Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Tax, F. E., Yoshida, S. and Feldmann, K. A. (2000) Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiol. 124, 201-209. https://doi.org/10.1104/pp.124.1.201
  41. Oldenhof, H., Wolkers, W. F., Bowman, J. L., Tablin, F. and Crowe, J. H. (2006) Freezing and desiccation tolerance in the moss Physcomitrella patens: an in situ fourier transform infrared spectroscopic study. Biochim. Biophys. Acta 1760, 1226-1234. https://doi.org/10.1016/j.bbagen.2006.03.025
  42. Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 45-50. https://doi.org/10.1093/nar/29.9.e45
  43. Quatrano, R. S., McDaniel, S. F., Khandelwal, A., Perroud, P. F. and Cove, D. J. (2007) Physcomitrella patens: mosses enter the genomic age. Curr. Opin. Plant Biol. 10, 182-189. https://doi.org/10.1016/j.pbi.2007.01.005
  44. Rancour, D. M., Dickey, C. E., Park, S. and Bednarek, S. Y. (2002) Characterization of AtCDC48. Evidence for multiple membrane fusion mechanisms at the plane of cell division in plants. Plant Physiol. 130, 1241-1253. https://doi.org/10.1104/pp.011742
  45. Rancour, D. M., Park, S., Knight, S. D. and Bednarek, S. Y. (2004) Plant UBX domain-containing protein 1, PUX1, regulates the oligomeric structure and activity of Arabidopsis CDC48. J. Biol. Chem. 279, 54264-54274. https://doi.org/10.1074/jbc.M405498200
  46. Rensing, S. A., Fritzowsky, D., Lang, D. and Reski, R. (2005) Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens. BMC Genomics 6, 43-56. https://doi.org/10.1186/1471-2164-6-43
  47. Robaglia, C., Bruening, G., Haseloff, J. and Gerlach, W. L. (1993) Evolution and replication of tobacco ringspot virus satellite RNA mutants. EMBO J. 12, 2969-2976.
  48. Robinson, S. A., Wasley, J. and Tobin, A. K. (2003) Living on the edge-plants and global change in continental and maritime Antarctica. Global Change Biol. 9, 1681-1717. https://doi.org/10.1046/j.1365-2486.2003.00693.x
  49. Sablowski, R. and Harberd, N. P. (2005) Plant sciences. Plant genes on steroids. Science 307, 1569-1570. https://doi.org/10.1126/science.1110534
  50. Sambrook, J. and Russell, D. W. (2001) Molecular cloning: a laboratory manual. thrid ed. Cold Spring Harbor Laboratory Press, New York, USA.
  51. Schaefer, D. G. and Zryd, J. P. (2001) The moss Physcomitrella patens, now and then. Plant Physiol. 127, 1430-1438. https://doi.org/10.1104/pp.010786
  52. Schmeichel, K. L. and Beckerle, M. C. (1994) The LIM domain is a modular protein-binding interface. Cell 79, 211-219. https://doi.org/10.1016/0092-8674(94)90191-0
  53. Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninic, P., Hayashizaki, Y. and Shinozaki, K. (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13, 61-72. https://doi.org/10.1105/tpc.13.1.61
  54. Stockinger, E. J., Gilmour, S. J. and Thomashow, M. F. (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, A cisacting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Nat. Acad. Sci. USA 94, 1035-1040. https://doi.org/10.1073/pnas.94.3.1035
  55. Taylor, I. B., Burbidage, A. and Thompson, A. J. (2000) Control of abscisic acid synthesis. J. Exp. Bot. 51, 1563-1574. https://doi.org/10.1093/jexbot/51.350.1563
  56. Thomashow, M. F. (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50, 571-599. https://doi.org/10.1146/annurev.arplant.50.1.571
  57. Thomashow, M. F. (2001) So what's new in the field of plant cold acclimation? Lots! Plant Physiol. 125, 89-93. https://doi.org/10.1104/pp.125.1.89
  58. Wada, H., Gombos, Z. and Murata, N. (1990) Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347, 200-203. https://doi.org/10.1038/347200a0
  59. Welin, B. V., Olson, A. and Palva, E. T. (1995) Structure and organization of two closely related low-temperature-induced dhn/ lea/rab-like genes in Arabidopsis thaliana L. Heynh. Plant Mol. Biol. 29, 391-395. https://doi.org/10.1007/BF00043662
  60. Wolter, F. P., Schmidt, R. and Heinz, E. (1992) Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J. 11, 4685-4692.
  61. Xiong, L. M., Schumaker, K. S. and Zhu, J. K. (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 165-183.
  62. Xiong, L. M. and Zhu, J. K. (2001) Abiotic stress signal transduction in plants: Molecular and genetic perspectives. Physiol. Plant. 112, 152-166. https://doi.org/10.1034/j.1399-3054.2001.1120202.x
  63. Yamaguchi-Shinozaki, K. and Shinozaki, K. (2006) Transcriptional regulatory networks in cellular response and the tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57, 781-803. https://doi.org/10.1146/annurev.arplant.57.032905.105444
  64. Yin, Y., Vafeados, D., Tao, Y., Yoshida, S. and Asami, T. C. J. (2005) A new class of transcription factors mediates brassinosteroidregulated gene expression in Arabidopsis. Cell 120, 249-259. https://doi.org/10.1016/j.cell.2004.11.044
  65. Yin, Y., Wang, Z. Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T. and Chory, J. (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Plant Cell 109, 181-191.
  66. Yoshiba, Y., Aoki, C., Iuchi, S., Nanjo, T., Seki, M., Sekiguchi, F., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2001) Characterization of four extensin genes in Arabidopsis thaliana by differential gene expression under stress and non-stress conditions. DNA Res. 8, 115-122. https://doi.org/10.1093/dnares/8.3.115

Cited by

  1. Molecular cloning, tissue distribution and quantitative analysis of two proopiomelanocortin mRNAs in Japanese flounder (Paralichthys olivaceus) vol.42, pp.4, 2009, https://doi.org/10.5483/BMBRep.2009.42.4.206
  2. Identification and Analysis of Differentially Expressed Genes During Seed Development Using Suppression Subtractive Hybridization (SSH) in Phaseolus vulgaris vol.30, pp.3, 2012, https://doi.org/10.1007/s11105-011-0381-7
  3. Next-generation sequencing-based transcriptome profiling analysis of Pohlia nutans reveals insight into the stress-relevant genes in Antarctic moss vol.17, pp.3, 2013, https://doi.org/10.1007/s00792-013-0528-6
  4. Pythium infection activates conserved plant defense responses in mosses vol.230, pp.3, 2009, https://doi.org/10.1007/s00425-009-0969-4
  5. Differential expression of a poplar SK2-type dehydrin gene in response to various stresses vol.42, pp.7, 2009, https://doi.org/10.5483/BMBRep.2009.42.7.439
  6. Insights from the cold transcriptome ofPhyscomitrella patens: global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation vol.205, pp.2, 2015, https://doi.org/10.1111/nph.13004
  7. Between a Rock and a Dry Place: The Water-Stressed Moss vol.2, pp.3, 2009, https://doi.org/10.1093/mp/ssp018
  8. Desiccation tolerance and natural cold acclimation allow cryopreservation of bryophytes without pretreatment or use of cryoprotectants vol.113, pp.4, 2010, https://doi.org/10.1639/0007-2745-113.4.760
  9. Proteomic analysis of the cold stress response in the moss,Physcomitrella patens vol.9, pp.19, 2009, https://doi.org/10.1002/pmic.200900062
  10. Target deletion of the AAA ATPase PpCDC48II in Physcomitrella patens results in freezing sensitivity after cold acclimation vol.55, pp.2, 2012, https://doi.org/10.1007/s11427-012-4277-z
  11. Isolation and characterization of cold inducible genes in carrot by suppression subtractive hybridization vol.57, pp.1, 2013, https://doi.org/10.1007/s10535-012-0250-8
  12. cDNA-AFLP analysis reveals the adaptive responses of citrus to long-term boron-toxicity vol.14, pp.1, 2014, https://doi.org/10.1186/s12870-014-0284-5