DOI QR코드

DOI QR Code

Systematic Studies of 12S Seed Storage Protein Accumulation and Degradation Patterns during Arabidopsis Seed Maturation and Early Seedling Germination Stages

  • Li, Qing (The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University) ;
  • Wang, Bai-Chen (The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University) ;
  • Xu, Yu (The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University) ;
  • Zhu, Yu-Xian (The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University)
  • Published : 2007.05.31

Abstract

Seed storage proteins (SSPs) are important for seed germination and early seedling growth. We studied the accumulation and degradation profiles of four major Arabidopsis 12S SSPs using a 2-DE scheme combined with mass spectrometric methods. On the 2-DE map of 23 dpa (days post anthesis) siliques, 48 protein spots were identified as putative full-length or partial $\alpha$, $\delta$ subunits. Only 9 of them were found in 12 dpa siliques with none in younger than 8 dpa siliques, indicating that the accumulation of 12S SSPs started after the completion of cell elongation processes both in siliques and in developing seeds. The length and strength of transcription activity for each gene determined the final contents of respective SSP. At the beginning of imbibition, 68 SSP spots were identified while only 2 spots were found at the end of the 4 d germination period, with $\alpha$, subunits degraded more rapidly than the $\alpha$ subunits. The CRC $\delta$ subunit was found to degrade from its C-terminus with conserved sequence motifs. Our data provide an important basis for understanding the nutritional value of developing plant seeds and may serve as a useful platform for other species.

Keywords

References

  1. Becker, C., Senyuk, V. I., Shutov, A. D., Nong, V. H., Fischer, J., Horstmann, C. and Muntz, K. (1997) Proteinase A, a storageglobulin-degrading endopeptidase from vetch (Vicia sativa L.) seeds, is not involved in early steps of storage protein mobilization. Eur. J. Biochem. 228, 456-462
  2. Canovas, F. M., Dumas-Gaudot, E., Recorbet, G., Jorrin, J., Mock, H. P. and Rossignol, M. (2004) Plant proteome analysis. Proteomics 4, 285-298 https://doi.org/10.1002/pmic.200300602
  3. Finnie, C., Melchoir, S., Roepstorff, P. and Svensson, B. (2002) Proteome analysis of grain filling and seed maturation in barley. Plant Physiol. 129, 1308-1319 https://doi.org/10.1104/pp.003681
  4. Fu, Q., Wang, B. C., Jin, X., Li, H. B., Han, P., Wei, K. H., Zhang, X. M. and Zhu, Y.-X. (2005) Proteomic analysis and extensive protein identification from dry, germinating Arabidopsis seeds and young seedlings. J. Biochem. Mol. Biol. 38, 650-660 https://doi.org/10.5483/BMBRep.2005.38.6.650
  5. Fujiwaraa, T., Nambarab, E., Yamagishib, K., Gotoc, D. B. and Naito, S. (2002) Storage proteins, The Arabidopsis book. Metabolism, http://www.bioone.org/bioone, pp. 1-12
  6. Gallardo, K., Job, C., Groot, S. P. C., Puype, M., Demol, H., Vandekerkhove, J. and Job, D. (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 126, 835-848 https://doi.org/10.1104/pp.126.2.835
  7. Goldberg, R. B., de Paiva, G. and Yadegari, R. (1994) Plant embryogenesis: zygote to seed. Science 266, 605-614 https://doi.org/10.1126/science.266.5185.605
  8. Gruis, D. F., Selinger, D. A., Curran, J. M. and Jung, R. (2002) Redundant proteolytic mechanisms process seed storage proteins in the absence of seed-type members of the vacuolar processing enzyme family of cysteine proteases. Plant Cell 14, 2863-2882 https://doi.org/10.1105/tpc.005009
  9. Gruis, D. F., Schulze, J. and Jung R. (2004) Storage protein accumulation in the absence of the vacuolar processing enzyme family of cysteine proteases. Plant Cell 16, 270-290 https://doi.org/10.1105/tpc.016378
  10. Heath, J. D., Weldon, R., Monnot, C. and Meinke, D. W. (1986) Analysis of storage proteins in normal and aborted seeds from embryo-lethal mutants of Arabidopsis thaliana. Planta 169, 304-312 https://doi.org/10.1007/BF00392124
  11. Herman, E. M. and Larkins, B. A. (1999) Protein storage bodies and vacuoles. Plant Cell 11, 601-614 https://doi.org/10.1105/tpc.11.4.601
  12. Higashi, Y., Hirai, M. Y., Fujiwara, T., Naito, S., Noji, M. and Saito K. (2006) Proteomic and transcriptomic analysis of Arabidopsis seeds: molecular evidence for successive processing of seed proteins and its implication in the stress response to sulfur nutrition. Plant J. 48, 557-571 https://doi.org/10.1111/j.1365-313X.2006.02900.x
  13. Kawagoe, Y., Suzuki, K., Tasaki, M., Yasuda, H., Akagi, K., Katoh, E., Nishizawa, N. K., Ogawa, M. and Takaiwa, F. (2005) The critical role of disulfide bond formation in protein sorting in the endosperm of rice. Plant Cell 17, 1141-1153 https://doi.org/10.1105/tpc.105.030668
  14. Krebbers, E., Herdies, L., de Clercq, A., Seurinck, J., Leemans, J., van Damme, J., Segura, M., Gheysen, G., van Montagu, M. and Vandekerckhove, J. (1988) Determination of the processing sites of an Arabidopsis 2S albumin and characterization of the complete gene family. Plant Physiol. 87, 859-866 https://doi.org/10.1104/pp.87.4.859
  15. Li, Q., Feng, J. X., Han, P. and Zhu, Y.-X. (2006) Parental RNA is significantly degraded during Arabidopsis seed germination. J. Int. Plant Biol. 48, 114-120 https://doi.org/10.1111/j.1744-7909.2006.00216.x
  16. Manfre, A. J., Lanni, L. M. Marcotte, W. R. (2006) The Arabidopsis group 1 LATE EMBRYOGENESIS ABUNDANT protein ATEM6 is required for normal seed development. Plant Physiol. 140, 140-149 https://doi.org/10.1104/pp.105.072967
  17. Muntz, K. (1998) Deposition of storage proteins. Plant Mol. Biol. 38, 77-99 https://doi.org/10.1023/A:1006020208380
  18. Pang, P. P., Pruitt, R. E. and Meyerowitz, E. M. (1988) Molecular cloning, genome organization, expression and evolution of 12S seed storage protein genes of Arabidopsis thaliana. Plant Mol. Biol. 11, 805-820 https://doi.org/10.1007/BF00019521
  19. Schlereth, A., Standhardt, D., Mock, H. P. and Muntz, K. (2001) Stored cysteine proteinases start globulin mobilization in protein bodies of embryonic axes and cotyledons during vetch (Vicia sativa L.) seed germination. Planta 212, 718-727 https://doi.org/10.1007/s004250000436
  20. Sheoran, I. S., Olson, D. J., Ross, A. R. and Sawhney, V. K. (2005) Proteome analysis of embryo and endosperm from germinating tomato seeds. Proteomics 5, 3752-3764 https://doi.org/10.1002/pmic.200401209
  21. Shi Y. H., Zhu, S. W., Mao, X. Z., Feng, J. X., Qin, Y. M., Zhang, L., Cheng, J., Wei, L. P., Wang, Z. Y. and Zhu, Y.-X. (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18, 651-664 https://doi.org/10.1105/tpc.105.040303
  22. Shimada, T., Yamada, K., Kataoka, M., Nakaune, S., Koumoto, Y., Kuroyanagi, M., Tabata, S., Kato, T., Shinozaki, K., Seki, M., Kobayashi, M., Kondo, M., Nishimura, M. and Hara-Nishimura, I. (2003) Vacuolar processing enzymes are essential for proper processing of seed storage proteins in Arabidopsis thaliana. J. Biol. Chem. 278, 32292-32299 https://doi.org/10.1074/jbc.M305740200
  23. Van der Klei, H., van Damme, J., Casteels, P. And Krebbers, E. (1993) A fifth 2S albumin isoform is present in Arabidopsis thaliana. Plant Physiol. 101, 1415-1416 https://doi.org/10.1104/pp.101.4.1415
  24. Wang, B. C., Wang, H. X., Feng, J. X., Meng, D. Z., Qu, L. J. and Zhu, Y.-X. (2006) Post-translational modifications, but not transcriptional regulation, of major chloroplast RNA-binding proteins are related to Arabidopsis seedling development. Proteomics 6, 2555-2563 https://doi.org/10.1002/pmic.200500657
  25. Wang, D. Y., Xu, Y. J., Li, Q., Hao, X. M., Cui, K. M., Sun, F. Z. And Zhu, Y.-X. (2003) Transgenic expression of a putative calcium transporter affects the time of Arabidopsis flowering. Plant J. 33, 285-292 https://doi.org/10.1046/j.1365-313X.2003.01627.x

Cited by

  1. Proteomic Profiling of the Aleurone Layer of Mature Arabidopsis thaliana Seed vol.31, pp.2, 2013, https://doi.org/10.1007/s11105-012-0498-3
  2. Proteomic analysis of middle and late stages of bread wheat (Triticum aestivum L.) grain development vol.6, 2015, https://doi.org/10.3389/fpls.2015.00735
  3. Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.) vol.12, pp.1, 2012, https://doi.org/10.1186/1471-2229-12-147
  4. Plant hormones and seed germination vol.99, 2014, https://doi.org/10.1016/j.envexpbot.2013.11.005
  5. Storage Reserve Accumulation in Arabidopsis: Metabolic and Developmental Control of Seed Filling vol.6, 2008, https://doi.org/10.1199/tab.0113
  6. Plant proteomics update (2007–2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge vol.72, pp.3, 2009, https://doi.org/10.1016/j.jprot.2009.01.026
  7. Recent developments in the application of proteomics to the analysis of plant responses to heavy metals vol.9, pp.10, 2009, https://doi.org/10.1002/pmic.200800935
  8. Transcriptional programs regulating seed dormancy and its release by after-ripening in common wheat (Triticum aestivum L.) vol.10, pp.4, 2012, https://doi.org/10.1111/j.1467-7652.2012.00682.x
  9. Protein profile of cotyledon, tegument, and embryonic axis of mature acorns from a non-orthodox plant species: Quercus ilex vol.243, pp.2, 2016, https://doi.org/10.1007/s00425-015-2404-3
  10. Proteomic characterisation of subclover seed storage proteins during germination vol.89, pp.10, 2009, https://doi.org/10.1002/jsfa.3666