DOI QR코드

DOI QR Code

Expression of Bacillus subtilis proBA Genes and Reduction of Feedback Inhibition of Proline Synthesis Increases Proline Production and Confers Osmotolerance in Transgenic Arabidopsis

  • Chen, Mingqing (State Key Laboratory of Virology, College of Life Sciences, Wuhan University) ;
  • Wei, Hongbo (State Key Laboratory of Virology, College of Life Sciences, Wuhan University) ;
  • Cao, JunWei (State Key Laboratory of Virology, College of Life Sciences, Wuhan University) ;
  • Liu, Ruijie (State Key Laboratory of Virology, College of Life Sciences, Wuhan University) ;
  • Wang, Youliang (State Key Laboratory of Virology, College of Life Sciences, Wuhan University) ;
  • Zheng, Congyi (State Key Laboratory of Virology, College of Life Sciences, Wuhan University)
  • Published : 2007.05.31

Abstract

Proline accumulation has been shown to correlate with tolerance to drought and salt stresses in plants. We attempt to introduce the wild-type, mutant, and fusion proBA genes derived from Bacillus subtilis into Arabidopsis thaliana under the control of a strong promoter cauliflower mosaic virus 35S (CaMV35S). The transgenic plants produced higher level of free proline than control and the overproduction of proline resulted in the increased tolerance to osmotic stress in transgenic plants. Besides, the mutation in proBA genes, which were proved to lead $\alpha$-glutamyl kinase ($\alpha$-GK) reduces sensitivity to the end-product inhibition and the fusion of proB and proA also result in increasing proline production and confer osmotolerance in transgenic lines.

Keywords

References

  1. Adams, E. and Frank, L. (1980) Metabolism of proline and the hydroxyprolines. Annu. Rev. Biochem. 49, 1005-1061. https://doi.org/10.1146/annurev.bi.49.070180.005041
  2. Bates, L. S., Waldren, R. P. and Teeare, I. D. (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39, 205-207. https://doi.org/10.1007/BF00018060
  3. Bechtold, N., Ellis, J. and Lelletier, G. (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R Acad. Sci. Paris Life Sci. 316, 1194-1199.
  4. Blum, A. (1996) Crop responses to drought and the interpretation of adaptation. Plant Growth Regulation 20, 135-148. https://doi.org/10.1007/BF00024010
  5. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Csonka, L. N. (1981) Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol. Gen. Genet. 182, 82-86. https://doi.org/10.1007/BF00422771
  7. Csonka, L. N., .Gelvin, S. B, Goodner, B. W., Orser, C. S., Siemieniak, D. and Slightom, J. L. (1988) Nucleotide sequence of a mutation in the proB gene of Escherichia coli that confers proline overproduction and enhanced tolerance to osmotic stress. Gene 64, 199-205. https://doi.org/10.1016/0378-1119(88)90335-6
  8. Dandekar, A. M. and Uratsu, S. L. (1988) A single base pair change in proline biosynthesis genes causes osmotic stress tolerance. J. Bacteriol. 170, 5943-5945. https://doi.org/10.1128/jb.170.12.5943-5945.1988
  9. Fiedler, M. and Skerra, A. (2001) proBA complementation of an auxotrophic E. coli strain improves plasmid stability and expression yield during fermented production of a recombinant antibody fragment. Gene 274, 111-118 https://doi.org/10.1016/S0378-1119(01)00629-1
  10. Garg, A. K., Kim, J. K., Owens, T. G., Ranwala, A. P., Choi, Y. D., Kochian, L. V. and Wu, R. (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc. Natl. Acad. Sci. USA 99, 15898-15903. https://doi.org/10.1073/pnas.252637799
  11. Hare, P. D., Cress, W. A. and Van Staden, J. (1998) Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment 21, 535-553. https://doi.org/10.1046/j.1365-3040.1998.00309.x
  12. Hong, Z., Lakkineni, K., Zhang, H. and Verma D. P. S. (2000) Removal of feedback inhibition of D1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol. 122, 1129-1136. https://doi.org/10.1104/pp.122.4.1129
  13. Hu, C. A., Delauney, A. J. and Verma, D. P. (1992) A bifunctional enzyme (D1-pyrroline-5-carboxylate synthetase) catalyses the first two steps in proline biosynthesis in plants. Proc. Natl. Acad. Sci. USA 89, 9354-9358. https://doi.org/10.1073/pnas.89.19.9354
  14. Huang, J., Hirji, R., Adam, L., Rozwadowski, K. L., Hammerlind, J. K., Keller, W. A. and Selvaraj, G. (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol. 122, 747-756. https://doi.org/10.1104/pp.122.3.747
  15. Kavi Kishor, P. B., Hong, Z., Miao, G., Hu, C. A. and Verma, D. P. S. (1995) Overexpression of D 1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108, 1387-1394. https://doi.org/10.1104/pp.108.4.1387
  16. Kempf, B. and Bremer, E. (1998) Uptake and synthesis of compatible solutes as microbial stress responses to highosmolality environments. Arch. Microbiol. 170, 319-330. https://doi.org/10.1007/s002030050649
  17. Liu, R. J., Cao, J. W. and Miao, L. X. (2004) proA gene cloning and function analysis of proBA gene in osmoregulation from a salt-tolerant mutant of Bacillus subtilis. Acta. Microbiol. Sinica. 44, 452-456.
  18. Liu, R. J., Chen, T. and Cao, J. W. (2005) Construction of fused osmoregulation proBA gene from a salt-tolerant mutant of Bacillus subtilis and its influence on the osmotolerance of E. coli. Acta Microbiol. Sinica. 45, 23-26.
  19. Miao, L. X., Cao, J. W., Liu, R. J., Wang, Y. L. and Zeng, Y. H. (2002) Cloning and sequencing of proBA gene from the selected mutant resistant to proline analogue from Bacillus subtilis. Acta. Genetica. Sinica. 29, 1111-1117.
  20. Nomura, M., Ishitani, M., Takabe, T., Rai, A. K. and Takabe, T. (1995) Synechococcus sp. PPC 7942 transformed with E. coli bet genes produces glycine betaine from choline and acquires resistance to salt stress. Plant Physiol. 107, 703-708. https://doi.org/10.1104/pp.107.3.703
  21. Pilon-Smits, E. A. H., Ebskamp, M. J. M., Paul, M. J., Jeuken, M. J. W., Weisbeek, P. J. and Smeekens, S. C. M. (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol. 107, 125-130. https://doi.org/10.1104/pp.107.1.125
  22. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York, USA.
  23. Serraj, R. and Sinclair, T. R. (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant, Cell and Environment 25, 333-341. https://doi.org/10.1046/j.1365-3040.2002.00754.x
  24. Shen, B., Jensen, R. G. and Bohnert, H. J. (1997) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol. 113, 1177-1183. https://doi.org/10.1104/pp.113.4.1177
  25. Sleator, R. D., Gahan, C. G. M. and Hill, C. (2001) Mutations in the Listerial proB gene leading to proline overproduction: effects on salt tolerance and murine infection. Appl. Environ. Microbiol. 67, 4560-4565. https://doi.org/10.1128/AEM.67.10.4560-4565.2001
  26. Smith, C. J., Deuth, A. H. and Rushlow, K. E. (1984) Purification and characteristics of a $\gamma$-glutamyl kinase involved in Escherichia coli proline biosynthesis. J. Bacteriol. 157, 545-551.
  27. Su, J., Shen, Q., Ho, T. H. D. and Wu, R. (1998) Dehydrationstress regulated transgene expression in stably transformed rice plants. Plant Physiol. 117, 913-922. https://doi.org/10.1104/pp.117.3.913
  28. Tarczynski, M. C., Jensen, R. G. and Bohnert, J. H. (1993) Stress protection of transgenic tobacco by production of the osmolyte Mannitol. Science 259, 508-510. https://doi.org/10.1126/science.259.5094.508
  29. Whatmore, A. M., Chudek, J. A. and Reed, R. H. (1990) The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J. Gene. Microbiol. 136, 2527-2535. https://doi.org/10.1099/00221287-136-12-2527
  30. Wood, J. M., Bremer, E., Csonka, L. N., Karaemer, R., Poolman, B., Van der Heide, T. and Smith, L. T. (2001) Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Com. Biochem. Physiol. Part A 130, 437-460. https://doi.org/10.1016/S1095-6433(01)00442-1
  31. Zhang, C. S., Lu, Q. and Verma, D. S. P. (1995) Removal of feedback inhibition of delta-1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first 2 steps of proline biosynthesis in plants. J. Biol. Chem. 270, 20491-20496. https://doi.org/10.1074/jbc.270.35.20491

Cited by

  1. Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants vol.181, pp.2, 2011, https://doi.org/10.1016/j.plantsci.2011.04.013
  2. Glutamate kinase from Thermotoga maritima: characterization of a thermophilic enzyme for proline biosynthesis vol.14, pp.4, 2010, https://doi.org/10.1007/s00792-010-0320-9
  3. Proline: a multifunctional amino acid vol.15, pp.2, 2010, https://doi.org/10.1016/j.tplants.2009.11.009
  4. Signal regulation of proline metabolism in callus of the halophyte Nitraria tangutorum Bobr. grown under salinity stress vol.112, pp.1, 2013, https://doi.org/10.1007/s11240-012-0209-7
  5. Pyrroline-5-carboxylate synthase and proline biosynthesis: From osmotolerance to rare metabolic disease 2010, https://doi.org/10.1002/pro.340
  6. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation vol.22, pp.2, 2015, https://doi.org/10.1016/j.sjbs.2014.12.001
  7. Over-expression of ThpI from Choristoneura fumiferana enhances tolerance to cold in Arabidopsis vol.37, pp.2, 2010, https://doi.org/10.1007/s11033-009-9759-0
  8. T-box-mediated control of the anabolic proline biosynthetic genes of Bacillus subtilis vol.157, pp.4, 2011, https://doi.org/10.1099/mic.0.047357-0
  9. Role of microorganisms in adaptation of agriculture crops to abiotic stresses vol.27, pp.5, 2011, https://doi.org/10.1007/s11274-010-0572-7
  10. Microbial amelioration of crop salinity stress vol.63, pp.9, 2012, https://doi.org/10.1093/jxb/ers033
  11. Bacterial-Mediated Tolerance and Resistance to Plants Under Abiotic and Biotic Stresses vol.35, pp.1, 2016, https://doi.org/10.1007/s00344-015-9521-x
  12. Biotechnological perspectives of microbes in agro-ecosystems vol.33, pp.10, 2011, https://doi.org/10.1007/s10529-011-0662-0
  13. Molecular Mechanisms Modulating Glutamate Kinase Activity. Identification of the Proline Feedback Inhibitor Binding Site vol.404, pp.5, 2010, https://doi.org/10.1016/j.jmb.2010.10.019
  14. Over-expression of BcFLC1 from non-heading Chinese cabbage enhances cold tolerance in Arabidopsis vol.57, pp.2, 2013, https://doi.org/10.1007/s10535-012-0287-8
  15. Microbial rescue to plant under habitat-imposed abiotic and biotic stresses vol.96, pp.5, 2012, https://doi.org/10.1007/s00253-012-4429-x
  16. Uptake of Amino Acids and Their Metabolic Conversion into the Compatible Solute Proline Confers Osmoprotection to Bacillus subtilis vol.81, pp.1, 2015, https://doi.org/10.1128/AEM.02797-14
  17. Impacts of Paraburkholderia phytofirmans Strain PsJN on Tomato (Lycopersicon esculentum L.) Under High Temperature vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.01397