DOI QR코드

DOI QR Code

Cotton GhKCH2, a Plant-specific Kinesin, is Low-affinitive and Nucleotide-independent as Binding to Microtubule

  • Xu, Tao (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University) ;
  • Sun, Xuewei (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University) ;
  • Jiang, Shiling (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University) ;
  • Ren, Dongtao (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University) ;
  • Liu, Guoqin (State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University)
  • Published : 2007.09.30

Abstract

Kinesin is an ATP-driven microtubule motor protein that plays important roles in control of microtubule dynamics, intracellular transport, cell division and signal transduction. The kinesin superfamily is composed of numerous members that are classified into 14 subfamilies. Animal kinesins have been well characterized. In contrast, plant kinesins have not yet to be characterized adequately. Here, a novel plant-specific kinesin gene, GhKCH2, has been cloned from cotton (Gossypium hirsutum) fibers and biochemically identified by prokaryotic expression, affinity purification, ATPase activity assay and microtubule-binding analysis. The putative motor domain of GhKCH2, $M_{396-734}$ corresponding to amino acids Q396-N734 was fused with 6$\times$His-tag, soluble-expressed in E. coli and affinity-purified in a large amount. The biochemical analysis demonstrated that the basal ATPase activity of $M_{396-734}$ is not activated by $Ca^{2+}$, but stimulated 30-fold max by microtubules. The enzymatic activation is microtubule-concentration-dependent, and the concentration of microtubules that corresponds to half-maximum activation was about 11 ${\mu}M$, much higher than that of other kinesins reported. The cosedimentation assay indicated that $M_{396-734}$ could bind to microtubules in vitro whenever the nucleotide AMP-PNP is present or absent. As a plant-specific microtubule-dependent kinesin with a lower microtubule-affinity and a nucleotide-independent microtubule-binding ability, cotton GhKCH2 might be involved in the function of microtubules during the deposition of cellulose microfibrils in fibers or the formation of cell wall.

Keywords

References

  1. Bloom, G. S. and Endow, S. A. (1994) Motor proteins. 1: kinesins. Protein Profile 1, 1059-1116.
  2. Case, R. B., Rice, S., Hart, C. L., Ly, B. and Vale, R. D. (2000) Role of the kinesin neck linker and catalytic core in microtubule-based motility. Curr. Biol. 10, 157-160. https://doi.org/10.1016/S0960-9822(00)00316-X
  3. Castoldi, M. and Popov, A. V. (2003) Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr. Purif. 32, 83-88. https://doi.org/10.1016/S1046-5928(03)00218-3
  4. Emons, A. M. and Mulder, B. M. (2000) How the deposition of cellulose microfibrils builds cell wall architecture. Trends Plant Sci. 5, 35-40. https://doi.org/10.1016/S1360-1385(99)01507-1
  5. Endow, S. A. (1999) Determinants of molecular motor directionality. Nat. Cell Biol. 1, E163-167. https://doi.org/10.1038/14113
  6. Fisher, D. D. and Cyr, R. J. (1998) Extending the microtubule/microfibril paradigm cellulose synthesis is required for normal cortical microtubule alignment in elongating cells. Plant Physiol. 116, 1043-1051. https://doi.org/10.1104/pp.116.3.1043
  7. Gertel, E. T. and Green, P. B. (1977) Cell growth pattern and wall microfibrillar arrangement: experiments with nitella. Plant Physiol. 60, 247-254. https://doi.org/10.1104/pp.60.2.247
  8. Hackney, D. D. (1988) Kinesin ATPase: rate-limiting ADP release. Proc. Natl. Acad. Sci USA 85, 6314-6318. https://doi.org/10.1073/pnas.85.17.6314
  9. Kloth, R. H. (1989) Changes in the level of tubulin subunits during development of cotton (Gossypium hirsutum) fiber. Physiol. Plant 76, 37-41. https://doi.org/10.1111/j.1399-3054.1989.tb05449.x
  10. Klumpp, L. M., Brendza, K. M., Rosenberg, J. M., Hoenger, A. and Gilbert, S. P. (2003). Motor domain mutation traps kinesin as a microtubule rigor complex. Biochemistry 42, 2595-2606. https://doi.org/10.1021/bi026715r
  11. Kuznetsov, S. A. and Gelfand, V. I. (1986) Bovine brain kinesin is a microtubule-activated ATPase. Proc. Natl. Acad. Sci. USA 83, 8530-8534. https://doi.org/10.1073/pnas.83.22.8530
  12. Lawrence, C. J., Dawe, R. K., Christie, K. R., Cleveland, D. W., Dawson, S. C., Endow, S. A., Goldstein, L. S., Goodson, H. V., Hirokawa, N., Howard, J., Malmberg, R. L., McIntosh, J. R., Miki, H., Mitchison, T. J., Okada, Y., Reddy, A. S., Saxton, W. M., Schliwa, M., Scholey, J. M., Vale, R. D., Walczak, C. E. and Wordeman, L. (2004) A standardized kinesin nomenclature. J. Cell Biol. 167, 19-22. https://doi.org/10.1083/jcb.200408113
  13. LeBel, D., Poirier, G. G. and Beaudoin, A. R. (1978) A convenient method for the ATPase assay. Anal. Biochem. 85, 86-89. https://doi.org/10.1016/0003-2697(78)90277-4
  14. Ma, Y. Z. and Taylor, E. W. (1995) Mechanism of microtubule kinesin ATPase. Biochemistry 34, 13242-13251. https://doi.org/10.1021/bi00040a040
  15. Marx, A., Muller, J. and Mandelkow, E. (2005). The structure of microtubule motor proteins. Adv. Protein Chem. 71, 299-344. https://doi.org/10.1016/S0065-3233(04)71008-6
  16. Matsui, K., Collings, D. and Asada, T. (2001). Identification of a novel plant-specific kinesin-like protein that is highly expressed in interphase tobacco BY-2 cells. Protoplasma 215, 105-115. https://doi.org/10.1007/BF01280307
  17. Matthies, H. J. G., Baskin, R. J. and Hawley, R. S. (2001) Orphan kinesin NOD lacks motile properties but does possess a microtubule-stimulated ATPase activity. Mol. Biol. Cell 12, 4000-4012. https://doi.org/10.1091/mbc.12.12.4000
  18. Mitsui, H., Nakatani, K., Yamaguchi-Shinoza, K., Shinozaki, K., Nishikawa, K. and Takahashi, H. (1994) Sequencing and characterization of the kinesin-related genes katB and katC of Arabidopsis thaliana. Plant Mol. Biol. 25, 865-876. https://doi.org/10.1007/BF00028881
  19. Mitsui, H., Yamaguchi-Shinoza, K., Shinozaki, K., Nishikawa, K. and Takahashi, H. (1993) Identification of a gene family (kat) encoding kinesin-like proteins in Arabidopsis thaliana and the characterization of secondary structure of KatA. Mol. Gen. Genet. 238, 362-368. https://doi.org/10.1007/BF00291995
  20. Ni, C. Z., Wang, H. Q., Xu, T., Qu, Z. and Liu, G. Q. (2005) AtKP1, a kinesin-like protein, mainly localizes to mitochondria in Arabidopsis thaliana. Cell Res. 15, 725-733. https://doi.org/10.1038/sj.cr.7290342
  21. Pan, R., Lee, Y. R. and Liu, B. (2004) Localization of two homologous Arabidopsis kinesin-related proteins in the phragmoplast. Planta 220, 156-164. https://doi.org/10.1007/s00425-004-1324-4
  22. Preuss, M. L., Kovar, D. R., Lee, Y. R., Staiger, C. J., Delmer, D. P. and Liu, B. (2004) A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol. 136, 3945-3955. https://doi.org/10.1104/pp.104.052340
  23. Reddy, A. S. and Day, I. S. (2001). Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics 2, 2. https://doi.org/10.1186/1471-2164-2-2
  24. Reddy, A. S. N. and Day, I. S. (2000) The role of the cytoskeleton and a molecular motor in trichome morphogenesis. Trends Plant Sci. 5, 503-505. https://doi.org/10.1016/S1360-1385(00)01792-1
  25. Richardson, D. N., Simmons, M. P. and Reddy, A. S. (2006) Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. BMC Genomics 7, 18. https://doi.org/10.1186/1471-2164-7-18
  26. Sack, S., Kull, F. J. and Mandelkow, E. (1999) Motor proteins of the kinesin family. Structures, variations, and nucleotide binding sites. Eur. J. Biochem. 262, 1-11. https://doi.org/10.1046/j.1432-1327.1999.00341.x
  27. Sack, S., Muller, J., Marx, A., Thormahlen, M., Mandelkow, E. M., Brady, S. T. and Mandelkow, E. (1997) X-ray structure of motor and neck domains from rat brain kinesin. Biochemistry 36, 16155-16165. https://doi.org/10.1021/bi9722498
  28. Seagull, R. W. (1992) A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during in vitro cotton Fiber development. J. Cell Sci 101, 561-577.
  29. Shimizu, T., Sablin, E., Vale, R. D., Fletterick, R., Pechatnikova, E. and Taylor, E. W. (1995) Expression, purification, ATPase properties, and microtubule-binding properties of the ncd motor domain. Biochemistry 34, 13259-13266. https://doi.org/10.1021/bi00040a042
  30. Song, Y. H., Marx, A., Muller, J., Woehlke, G., Schliwa, M., Krebs, A., Hoenger, A. and Mandelkow, E. (2001) Structure of a fast kinesin: implications for ATPase mechanism and interactions with microtubules. EMBO J. 20, 6213-6225. https://doi.org/10.1093/emboj/20.22.6213
  31. Tamura, K., Nakatani, K., Mitsui, H., Ohashi, Y. and Takahashi, H. (1999). Characterization of katD, a kinesin-like protein gene specifically expressed in floral tissues of Arabidopsis thaliana. Gene 230, 23-32. https://doi.org/10.1016/S0378-1119(99)00070-0
  32. Umeki, N., Mitsui, T., Umezu, N., Kondo, K. and Maruta, S. (2006) Preparation and characterization of a novel rice plantspecific kinesin. J. Biochem. (Tokyo) 139, 645-654. https://doi.org/10.1093/jb/mvj074
  33. Vale, R.D., and Fletterick, R.J. (1997) The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol. 13, 745-777. https://doi.org/10.1146/annurev.cellbio.13.1.745
  34. Vos, J. W., Safadi, F., Reddy, A. S. and Hepler, P. K. (2000) The kinesin-like calmodulin binding protein is differentially involved in cell division. Plant Cell 12, 979-990. https://doi.org/10.1105/tpc.12.6.979
  35. Walker, R. A., Salmon, E. D. and Endow, S. A. (1990) The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature 347, 780-782. https://doi.org/10.1038/347780a0
  36. Williams, R. C. J. and Lee, J. C. (1982) Preparation of tubulin from brain; in Methods in Enzymology, Giovanni, D. S., Sidney, P. C., Nathan, O. K. (eds.), pp. 376-385, Academic Press, Inc., New York, USA.
  37. Yang, J. T., Laymon, R. A. and Goldstein, L. S. (1989) A three-domain structure of kinesin heavy chain revealed by DNA sequence and microtubule binding analyses. Cell 56, 879-889. https://doi.org/10.1016/0092-8674(89)90692-2
  38. Zhong, R., Burk, D. H., Morrison, W. H., 3rd, and Ye, Z. H. (2002) A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14, 3101-3117. https://doi.org/10.1105/tpc.005801

Cited by

  1. Crystallization and preliminary X-ray diffraction studies of the GhKCH2 motor domain: alteration of pH significantly improved the quality of the crystals vol.68, pp.7, 2012, https://doi.org/10.1107/S1744309112016351
  2. A novel actin-microtubule cross-linking kinesin, NtKCH, functions in cell expansion and division vol.193, pp.3, 2012, https://doi.org/10.1111/j.1469-8137.2011.03944.x
  3. Connecting two arrays: the emerging role of actin-microtubule cross-linking motor proteins vol.6, 2015, https://doi.org/10.3389/fpls.2015.00415
  4. The non-processive rice kinesin-14 OsKCH1 transports actin filaments along microtubules with two distinct velocities vol.1, pp.8, 2015, https://doi.org/10.1038/nplants.2015.111
  5. Putting a bifunctional motor to work: insights into the role of plant KCH kinesins vol.193, pp.3, 2012, https://doi.org/10.1111/j.1469-8137.2011.04030.x
  6. Characterization of a novel rice kinesin O12 with a calponin homology domain vol.149, pp.1, 2011, https://doi.org/10.1093/jb/mvq122
  7. Crystallization and X-ray diffraction analysis of the CH domain of the cotton kinesin GhKCH2 vol.72, pp.3, 2016, https://doi.org/10.1107/S2053230X16001825
  8. Cytoskeletal dynamics in interphase, mitosis and cytokinesis analysed through Agrobacterium-mediated transient transformation of tobacco BY-2 cells vol.190, pp.1, 2011, https://doi.org/10.1111/j.1469-8137.2010.03587.x
  9. Functions of the Arabidopsis kinesin superfamily of microtubule-based motor proteins vol.249, pp.4, 2012, https://doi.org/10.1007/s00709-011-0343-9
  10. Proteomic Analysis of Differences in Fiber Development between Wild and Cultivated Gossypium hirsutum L. vol.16, pp.8, 2017, https://doi.org/10.1021/acs.jproteome.7b00122
  11. A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments vol.421, pp.2, 2009, https://doi.org/10.1042/BJ20082020