Comparative Genomics Profiling of Clinical Isolates of Helicobacter pylori in Chinese Populations Using DNA Microarray

  • Han, Yue-Hua (Second affiliated hospital, School of medicine, Zhejiang University) ;
  • Liu, Wen-Zhong (Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine) ;
  • Shi, Yao-Zhou (National Engineering Center for Biochip at Shanghai, Zhangjiang Hi-Tech Park) ;
  • Lu, Li-Qiong (National Engineering Center for Biochip at Shanghai, Zhangjiang Hi-Tech Park) ;
  • Xiao, Shudong (Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine) ;
  • Zhang, Qing-Hua (National Engineering Center for Biochip at Shanghai, Zhangjiang Hi-Tech Park) ;
  • Zhao, Guo-Ping (National Engineering Center for Biochip at Shanghai, Zhangjiang Hi-Tech Park)
  • Published : 2007.02.22

Abstract

In order to search for specific genotypes related to this unique phenotype, we used whole genomic DNA microarray to characterize the genomic diversity of Helicobacter pylori (H. pylori) strains isolated from clinical patients in China. The open reading frame (ORF) fragments on our microarray were generated by PCR using gene-specific primers. Genomic DNA of H. pylori 26695 and J99 were used as templates. Thirty-four H. pylori isolates were obtained from patients in Shanghai. Results were judged based on In(x) transformed and normalized Cy3/Cy5 ratios. Our microarray included 1882 DNA fragments corresponding to 1636 ORFs of both sequenced H. pylori strains. Cluster analysis, revealed two diverse regions in the H. pylori genome that were not present in other isolates. Among the 1636 genes, 1091 (66.7%) were common to all H. pylori strains, representing the functional core of the genome. Most of the genes found in the H. pylori functional core were responsible for metabolism, cellular processes, transcription and biosynthesis of amino acids, functions that are essential to H. pylori's growth and colonization in its host. In contrast, 522 (31.9%) genes were strain-specific genes that were missing from at least one strain of H. pylori. Strain-specific genes primarily included restriction modification system components, transposase genes, hypothetical proteins and outer membrane proteins. These strain-specific genes may aid the bacteria under specific circumstances during their long-term infection in genetically diverse hosts. Our results suggest 34 H. pylori clinical strains have extensive genomic diversity. Core genes and strain-specific genes both play essential roles in H. pylori propagation and pathogenesis. Our microarray experiment may help select relatively significant genes for further research on the pathogenicity of H. pylori and development of a vaccine for H. pylori.

Keywords

References

  1. Achtman, M., T. Azuma, D.E. Berg, Y. Ito, G. Morelli, Z.J. Pan, S. Suerbaum, S.A. Thompson, A. van der Ende, and L.J. van Doorn. 1999. Recombination and clonal groupings within Helicobacter pylori from different geographical regions. Mol. Microl. biol. 32, 459-470
  2. Alm, R.A., L.S.L. Ling, D.T. Moir, B.L. King, E.D. Brown, P.C. Doig, D.R. Smith, B. Noonan, B.C. Guild, B.L. Dejonge, G. Carmel, P.J. Tummino, A. Caruso, M. Uria-Nickelsen, D.M. Mills, C. Ives, R. Gibson, D. Merberg, S.D. Mills, Q. Jiang, D.E. Taylor, G.F. Vovis, and T.J. Trust. 1999. Genomic sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature (London) 397, 176-180 https://doi.org/10.1038/16495
  3. Aspholm-Hurtig, M., G. Dailide, M. Lahmann, A. Kalia, D. Ilver, N. Roche, S. Vikstrom, R.Sjostrom, S. Linden, A.R. Backstrom, C. Lundberg, A. Arnqvist, J. Mahdavi, U.J. Nilsson, B. Velapatino, R.H. Gilman, M. Gerhard, T. Alarcon, M. Lopez- Brea, T. Nakazawa, J.G. Fox, P. Correa, M.G. Dominguez- Bello, G.I. Perez-Perez, M.J. Blaser, S. Normark, I. Carlstedt, S. Oscarson, S. Teneberg, D.E. Berg, and T. Boren. 2004. Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science 305, 519 -522 https://doi.org/10.1126/science.1098801
  4. Backert, S., E. Ziska, V. Brinkmann, U. Zimny-Arndt, A. Fauconnier, P.R. Jungblut, M. Naumann, and T.F. Meyer. 2000. Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell. Microbiol. 2, 155-164 https://doi.org/10.1046/j.1462-5822.2000.00043.x
  5. Backstrom, A., C. Lundberg, D. Kersulyte, D.E. Berg, T. Boren, and A. Arnqvist. 2004. Metastability of Helicobacter pylori bab adhesin genes and dynamics in Lewis b antigen binding. Proc. Natl. Acad. Sci. USA 101, 16923-1628
  6. Chan, K., S. Baker, C.C. Kim, C.S. Detweiler, G. Dougan, and S. Falkow. 2003. Genomic comparison of Salmonella enterica serovars and Salmonella bongori by use of an S. enterica serovar Typhimurium DNA mircroarray. J. Bacteriol. 185, 553-563 https://doi.org/10.1128/JB.185.2.553-563.2003
  7. Falush, D., C. Kraft, N.S. Taylor, P. Correa, J.G. Fox, M. Achtman, and S. Suerbaum. 2001. Recombination and mutation during long-term gastric colonization by Helicobacter pylori: Estimates of clock rates, recombination size, and minimal age. Proc. Natl. Acad. Sci. USA 98, 15056-15061
  8. Falush, D., T. Wirth, B. Linz, J.K. Pritchard, M. Stephens, M. Kidd, M.J. Blaser, D.Y. Graham, S. Vacher, G.I. Perez-Perez, Y. Yamaoka, F. Megraud, K. Otto, U. Reichard, E. Katzowitsch, X.Y. Wang, M. Achtman, and S. Suerbaum. 2003. Traces of human migrations in Helicobacter pylori populations. Science 299, 1582-1585 https://doi.org/10.1126/science.1080857
  9. Fitzgerald, J.R. and J.M. Musser. 2001. Evolutionary genomics of pathogenic bacteria. Trends Microbiol. 9, 547-553 https://doi.org/10.1016/S0966-842X(01)02228-4
  10. Fukiya, S., H. Mizoguchi, T. Tobe, and H. Mori. 2004. Extensive genomic diversity in pathogenic Escherichia coli and Shigella Strains revealed by comparative genomic hybridization microarray. J. Bacteriol. 186, 3911-3921 https://doi.org/10.1128/JB.186.12.3911-3921.2004
  11. Gatti, L.L., E. F. Souza, K. Leite, E. de Souza Bastos, L. Vicentini, L. da Silva, M. Smith, and S. Payao. 2005. cagA, vacA alelles and babA2 genotypes of Helicobacter pylori associated with gastric disease in Brazilian adult patients. Diagn. Microbiol. Infect. Dis. 51, 231-235 https://doi.org/10.1016/j.diagmicrobio.2004.11.007
  12. Gressmann, H., B. Linz, R. Ghai, K.P. Pleissner, R. Schlapbach, Y. Yamaoka, C. Kraft, S. Suerbaum, T.F. Meyer, and M. Achtman. 2005. Gain and loss of multiple genes during the evolution of Helicobacter pylori. PLoS. Genet. 1, 419-428
  13. Han, Y.H., W.Z. Liu, H.Y. Zhu, and S.D. Xiao. 2004. Clinical relevance of iceA and babA2 genotypes of Helicobacter pylori in a Shanghai population. Chin. J. Dig. Dis. 5, 181-185 https://doi.org/10.1111/j.1443-9573.2004.00175.x
  14. Israel, D.A., N. Salama, U. Krishna, U.M. Rieger, J.C. Atherton, S. Falkow, and R.M. Peek, Jr. 2001. Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc. Natl. Acad. Sci. USA 98, 14625-14630
  15. Jin, Q. Z.H. Yuan, J.G. Xu, Y. Wang, Y. Shen, W.C. Lu, J.H. Wang, H. Liu, J. Yang, F. Yang, X.B. Zhang, J.Y. Zhang, G.W. Yang, H.T. Wu, D. Qu, J. Dong, L.L. Sun, Y. Xue, A.L. Zhao, Y.S. Gao et al. 2002. Genome sequence of Shigella flexneri 2a: insights into patho-genicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids. Res. 30, 4432-4441 https://doi.org/10.1093/nar/gkf566
  16. Kuipers, E.J., D.A. Israel, J.G. Kusters, M.M. Gerrits, J. Weel, A. van der Ende, R.W.M. van der Hulst, H.P. Wirth, J. Hook- Nikanne, S.A. Thompson, and M.J. Blaser. 2000. Quasispecies development of Helicobacter pylori observed in paired isolates obtained years apart from the same host. J. Infect. Dis. 181, 273-282 https://doi.org/10.1086/315173
  17. Lin, L.F., J. Posfai, R.J. Roberts, and H. Kong. 2001. Comparative genomics of the restriction-modification systems in Helicobacter pylori. Proc. Natl. Acad. Sci. USA 98, 2740-2745
  18. Liu, J., G.M. Xu, Z.X. Tu, Z.S. Li, Y.F. Gong, and X.H. Ji. 2000. The distribution and significance of cag pathogenicity island of Helicobacter pylori isolated from Chinese patients. Chin. J. Intern. Med. 39, 457-460
  19. Lu, H., P.I. Hsu, D.Y. Graham, and Y. Yamaoka. 2005a. Duodenal ulcer promoting gene of Helicobacter pylori. Gastroenterology 28, 833-848
  20. Lu, H., Y. Yamaoka, and D.Y. Graham. 2005b. Helicobacter pylori virulence factors: facts and fantasies. Curr. Opin. Gastroenterol. 21, 653-659 https://doi.org/10.1097/01.mog.0000181711.04529.d5
  21. Momynaliev, K.T., S.I. Rogov, O.V. Selezneva, V.V. Chelysheva, T.A. Akopian, and V.M. Govorun. 2005. Comparative analysis of transcription profiles of Helicobacter pylori clinical isolates. Biochemistry 70, 383-390 https://doi.org/10.1007/s10541-005-0129-9
  22. Odenbreit, S., J. Puls, B. Sedlmaier, E. Gerland, W. Fischer, and R. Haas. 2000. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497- 1500 https://doi.org/10.1126/science.287.5457.1497
  23. Olfat, F.O., Q. Zheng, M. Oleastro, P. Voland, T. Boren, R. Karttunen, L. Engstrand, R. Rad, C. Prinz, and M. Gerhard. 2005. Correlation of the Helicobacter pylori adherence factor BabA with duodenal ulcer disease in four European countries. FEMS Immunol. Med. Microbiol. 44, 151-156 https://doi.org/10.1016/j.femsim.2004.10.010
  24. Salama, N., K. Guillemin, T.K. McDaniel, G. herlock, L. Tompkins, and S. Falkow. 2001. A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc. Natl. Acad. Sci. USA 97, 14668-14673
  25. Stein, M., R. Rappuoli, and A. Covacci. 2000. Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc. Natl. Acad. Sci. USA 97, 1263-1268
  26. Taboada, E.N., R.R. Acedillo, C.C. Luebbert, W.A. Findlay, and J.H. Nash. 2005. A new approach for the analysis of bacterial microarray-based comparative genomic hybridization: insights from an empirical study. BMC. Genomics 6, 78-88 https://doi.org/10.1186/1471-2164-6-78
  27. Takata, T., R. Aras, D. Tavakoli, T. Ando, A.Z. Olivares, and M.J. Blaser. 2002. Phenotypic and genotypic variation in methylases involved in type II restriction-modification systems in Helicobacter pylori. Nucleic Acids. Res. 30, 2444-2452 https://doi.org/10.1093/nar/30.11.2444
  28. Urwin, R. and M.C.J. Maiden. 2003. Multilocus sequence typing: A tool for global epidemiology. Trends Microbiol. 11, 479-487 https://doi.org/10.1016/j.tim.2003.08.006
  29. Welch, R.A., V. Burland, G. Plunkett, P. Redford, P. Roesch, D. Rasko, E.L. Buckles, S.R. Liou, A. Boutin, J. Hackett, D. Stroud, G.F. Mayhew, D.J. Rose, S. Zhou, D.C. Schwartz, N.T. Perna, H.L.T. Mobley, M.S. Donnenberg, and F.R. Blattner. 2002. Extensive mosaic structure revealed by the complete genome sequence of uro-pathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 17020-17024
  30. Yamazaki, S., A. Yamakawa, T. Okuda, M. Ohtani, H. Suto, Y. Ito, Y. Yamazaki, Y. Keida, H. Higashi, M. Hatakeyama, and T. Azuma. 2005. Distinct diversity of vacA, cagA,and cagE genes of Helicobacter pylori associated with peptic ulcer in Japan. J. Clin. Microbiol. 43, 3906-3916 https://doi.org/10.1128/JCM.43.8.3906-3916.2005
  31. Zhou, W., S. Yamazaki, A. Yamakawa, M. Ohtani, Y. Ito, Y. Keida, H. Higashi, M. Hatakeyama, J. Si, and T. Azuma. 2004. The diversity of vacA and cagA genes of Helicobacter pylori in East Asia. FEMS Immunol. Med. Microbiol. 40, 81-87 https://doi.org/10.1016/S0928-8244(03)00299-2