Identification of Genes Differentially Expressed in RAW264.7 Cells Infected by Salmonella typhimurium Using PCR Method

  • Kang, Kyung-Ho (Genome Research Center for Hematopoietic Diseases, Chonnam National University Medical School) ;
  • Song, Jung-A (Genome Research Center for Hematopoietic Diseases, Chonnam National University Medical School) ;
  • Shin, Dong-Jun (Genome Research Center for Hematopoietic Diseases, Chonnam National University Medical School) ;
  • Choy, Hyon-E (Genome Research Center for Hematopoietic Diseases, Chonnam National University Medical School) ;
  • Hong, Yeong-Jin (Genomic Research Center for Enteropathogenic Bacteria and Department of Microbiology)
  • Published : 2007.02.22

Abstract

Salmonella typhimurium, causing mouse typhoid, infects hosts such as macrophage cells, and proliferates in intracellular vacuoles causing infected cells to trigger numerous genes to respond against the infection. In this study, we tried to identify such genes in RAW264.7 cells by using the PCR screening method with degenerate primers. Fourteen genes were found to be differentially expressed after a 4 h infection in which the expression of 8 genes increased while expression of the others decreased. Most of the genes were involved in proinflammatory responses such as cytokines production and cell death. The mutation in msbB gene encoding the myristoyl transferase in lipid A of lipopolysaccharide (LPS) resulted in much lower toxicity to the inoculated animals. We compared the expression of the identified genes in wild-type and msbB-mutated S. typhimurium infections and found that Lyzs encoding lysozyme type M was differentially expressed. This gene is quite likely to be related to bacterial survival in the host cells.

Keywords

References

  1. Beutler, B. and A. Cerami. 1986. Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature 320,584-588 https://doi.org/10.1038/320584a0
  2. Detweiler, C.S., D.B. Cunanan, and S. Falkow. 2001. Host microarray analysis reveals a role for the Salmonella response regulator phoP in human macrophage cell death. Proc. Natl. Acad. Sci. USA 98, 5850-5855
  3. Durum, S.K., J.A. Schmidt, and J.J. Oppenheim. 1985. Interleukin 1: an immunological perspective. Annu. Rev. Immunol. 3, 263-287 https://doi.org/10.1146/annurev.iy.03.040185.001403
  4. Ernst, R.K., T. Guina, and S.I. Miller. 1999. How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. J. Infect. Dis. 179 Suppl 2, S326-330 https://doi.org/10.1086/513850
  5. Ganz, T. 2004. Antimicrobial polypeptides. J. Leukoc. Biol. 75, 34-38 https://doi.org/10.1189/jlb.0403150
  6. Jansen, A. and J. Yu. 2006. Differential gene expression of pathogens inside infected hosts. Curr. Opin. Microbiol. 9, 138-142 https://doi.org/10.1016/j.mib.2006.01.003
  7. Jones, B.D., W.A. Nichols, B.W. Gibson, M.G. Sunshine, and M.A. Apicella. 1997. Study of the role of the htrB gene in Salmonella typhimurium virulence. Infect. Immun. 65, 4778-4783
  8. Karow, M. and C. Georgopoulos. 1992. Isolation and characterization of the Escherichia coli msbB gene, a multicopy suppressor of null mutations in the high-temperature requirement gene htrB. J. Bacteriol. 174, 702-710 https://doi.org/10.1128/jb.174.3.702-710.1992
  9. Khan, S.A., P. Everest, S. Servos, N. Foxwell. U. Zahringer, H. Brade, E.T. Rietschel, G. Dougan, I.G. Charles, and D.J. Maskell. 1998. A lethal role for lipid A in Salmonella infections. Mol. Microbiol. 29, 571-579 https://doi.org/10.1046/j.1365-2958.1998.00952.x
  10. Kim, Y.J., C.I. Kwak, Y.Y. Gu, I.T. Hwang, and J.Y. Chun. 2004. Annealing control primer system for identification of differentially expressed genes on agarose gels. Biotechniques 36, 424-426
  11. Low, K.B., M. Ittensohn, T. Le, J. Platt, S. Sodi, M. Amoss, O. Ash, E. Carmichael, A. Chakraborty, J. Fischer, S.L. Lin, X. Luo, S.I. Miller, L. Zheng, I. King, J.M. Pawelek, and D. Bermudes. 1999. Lipid A mutant Salmonella with suppressed virulence and TNF alpha induction retain tumor-targeting in vivo. Nat. Biotechnol. 17, 37-41
  12. Lucas, R.L. and C.A. Lee. 2000. Unravelling the mysteries of virulence gene regulation in Salmonella typhimurium. Mol. Microbiol. 36, 1024-1033 https://doi.org/10.1046/j.1365-2958.2000.01961.x
  13. Pizarro-Cerda, J., E. Moreno, M. Desjardins, and J.P. Gorvel. 1997. When intracellular pathogens invade the frontiers of cell biology and immunology. Histol. Histopathol. 12, 1027-1038
  14. Salzman, N.H., M.M. Chou, H. de Jong, L. Liu, E.M. Porter, and Y. Paterson. 2003. Enteric salmonella infection inhibits Paneth cell antimicrobial peptide expression. Infect. Immun. 71, 1109-1115 https://doi.org/10.1128/IAI.71.3.1109-1115.2003
  15. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York, USA
  16. Sansonetti, P. 2002. Host-pathogen interactions: the seduction of molecular cross talk. Gut. 50 Suppl 3, III2-8
  17. Somerville, J.E., Jr., L. Cassiano, B. Bainbridge, M.D. Cunningham, and R.P. Darveau. 1996. A novel Escherichia coli lipid A mutant that produces an anti-inflammatory lipopolysaccharide. J. Clin. Invest. 97, 359-365 https://doi.org/10.1172/JCI118423
  18. Steele-Mortimer, O., J.H. Brumell, L.A. Knodler, S. Meresse, A. Lopez, and B.B. Finlay. 2002. The invasion-associated type III secretion system of Salmonella enterica serovar Typhimurium is necessary for intracellular proliferation and vacuole biogenesis in epithelial cells. Cell. Microbiol. 4, 43-54 https://doi.org/10.1046/j.1462-5822.2002.00170.x
  19. Sunshine, M.G., B.W. Gibson, J.J. Engstrom, W.A. Nichols, B.D. Jones, and M.A. Apicella. 1997. Mutation of the htrB gene in a virulent Salmonella typhimurium strain by intergeneric transduction: strain construction and phenotypic characterization. J. Bacteriol. 179, 5521-5533 https://doi.org/10.1128/jb.179.17.5521-5533.1997