Dynamic percolation grid Monte Carlo simulation

  • Altmann Nara (Centre for High Performance Polymers, Division of Chemical Engineering, University of Queensland) ;
  • Halley Peter J. (Centre for High Performance Polymers, Division of Chemical Engineering, University of Queensland) ;
  • Nicholson Timothy M. (Centre for High Performance Polymers, Division of Chemical Engineering, University of Queensland)
  • Published : 2007.03.31

Abstract

A dynamic Monte Carlo percolation grid simulation is used to predict the cure behaviour of thermoset materials. Molecules are distributed in a fixed grid and a probability of reaction is assigned to each pair of neighbouring units considering both reaction rates and diffusion. The concentration and network characteristics are predicted throughout the whole curing process and compared to experimental data for an epoxy-amine matrix.

Keywords

References

  1. Cloizeaux, J. D., 1992, Relaxation of entangled and partially entangled polymers in melts-time-dependent reptation, Macromolecules 25, 835-841 https://doi.org/10.1021/ma00028a051
  2. Dawnkaski, E. J., et al., 1995, Time-dependent monte-carlo simulations of radical densities and distributions on the diamond (001)(2x1)/H surface, Chemical Physics Letters 232, 524-530 https://doi.org/10.1016/0009-2614(94)01393-A
  3. de Gennes, P. G., 1971, Reptation of a polymer chain in the presence of fixed obstacles, Journal of Chemical Physics 55, 572-579 https://doi.org/10.1063/1.1675789
  4. de Miranda, M. I. G., et al., 1997, A DSC kinetic study on the effect of filler concentration on crosslinking of diglycidylether of bisphenol-A with 4,4'-diaminodiphenyl methane, Polymer 38, 1017-1020 https://doi.org/10.1016/S0032-3861(96)00601-5
  5. Dotson, N. A., et al., 1996, Polymerization Process Modeling VCH Publishers, New York
  6. Dubois, C., et al., 1998, Chemorheology of polyurethane systems as predicted from Monte Carlo simulations of their evolutive molecular weight distribution, Journal of Rheology 42, 435-452 https://doi.org/10.1122/1.550938
  7. Flory, P. J., 1953, Principles of polymer chemistry Cornell University Press. Ithica, New York
  8. Gillespie, D. T., 1977, Exact stochastic simulation of coupled chemical-reactions, Journal of Physical Chemistry 81, 2340-2361 https://doi.org/10.1021/j100540a008
  9. Gumen, V. R., et al., 2001, Prediction of the glass transition temperatures for epoxy resins and blends using group interaction modelling, Polymer 42, 5717-5725 https://doi.org/10.1016/S0032-3861(00)00930-7
  10. Lange, J., et al., 2000, Understanding vitrification during cure of epoxy resins using dynamic scanning calorimetry and rheological techniques, Polymer 41, 5949-5955 https://doi.org/10.1016/S0032-3861(99)00758-2
  11. Martin, J. E., et al., 1989, Viscoelasticity near the sol-gel transition, Physical Review A 39, 1325-1332 https://doi.org/10.1103/PhysRevA.39.1325
  12. Matsuoka, S., 1992, Relaxation Phenomena in Polymers Hansen, New York
  13. Mijovic, J. and S. Andjelic, 1995, A study of reaction-kinetics by near-infrared spectroscopy. 1. comprehensive analysis of a model epoxy/amine system, Macromolecules 28, 2787-2796 https://doi.org/10.1021/ma00112a026
  14. Mijovic, J., et al., 1991, Mechanistic modeling of epoxy amine reactions, Abstracts of Papers of the American Chemical Society 202, 162
  15. Moroni, A., et al., 1986, Cure Kinetics of epoxy-resins and aromatic diamines, Journal of Applied Polymer Science 32, 3761-3773 https://doi.org/10.1002/app.1986.070320231
  16. Moukarzel, C., 1998, A fast algorithm for backbones, International Journal of Modern Physics C, 9, 887-895 https://doi.org/10.1142/S0129183198000844
  17. Porter, D., 1995, Group interaction modelling of polymer properties Marcel Dekker, New York
  18. Prasatya, P., et al., 2001, A viscoelastic model for predicting isotropic residual stresses in thermosetting materials: Effects of processing parameters, Journal of Composite Materials, 35, 826-848 https://doi.org/10.1177/002199801772662424
  19. Randrianantoandro, H., et al., 1996, Slow dynamics in gels, Journal of Non-Newtonian Fluid Mechanics 67, 311-323 https://doi.org/10.1016/S0377-0257(96)01490-5
  20. Riccardi, C. C. and R. J. J. Williams, 1993, Modeling strategy for systems with both stepwise and chainwise chemistry revisited - the directionality effect on the buildup of the Network structure, Journal of Polymer Science Part B-Polymer Physics 31, 389-393 https://doi.org/10.1002/polb.1993.090310402
  21. Rohr, D. F. J., 1988. Modelling reaction and diffusion in epoxyamine polymerization kinetics. Delaware, University of Delaware
  22. Smith, I. T., 1961, The mechanism of the crosslinking of epoxide resins by amines, Polymer 2, 1357
  23. Stauffer, D. and A. Ahrony, 1992, Introduction to Percolation Theory Taylor and Francis, London
  24. Stauffer, D., et al., 1982, Gelation and critical phenomena, Advances in Polymer Science 44, 103-158 https://doi.org/10.1007/3-540-11471-8_4
  25. Stockmayer, W. H., 1943, Theory of molecular size distribution and gel formation in branched-chain polymers, Journal of Chemical Physics 11, 45-55 https://doi.org/10.1063/1.1723803
  26. Winter, H. H. and F. Chambon, 1986, Analysis of linear viscoelasticity of a cross-linking polymer at the gel point, Journal of Rheology 30, 367-382 https://doi.org/10.1122/1.549853