DOI QR코드

DOI QR Code

Preparation and Properties of the Intra-type Al2O3Ag Nanocomposites

입내 분산형 Al2O3/Ag 나노복합체의 제조와 특성

  • Cheon, Sung-Ho (The Research Institute of Daiyang Ind. Co.) ;
  • Han, In-Sub (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Awaji, Hideo (Department of Materials Science and Technology, Nagoya Institute of Technology)
  • Published : 2007.04.30

Abstract

Alumina/silver ($Al_2O_3/Ag$) nanocomposites with Ag content up to 9 vol% were prepared from nanopowder by soaking method using ${\gamma}-Al_2O_3$ of needle type and spark plasma sintering (SPS). The mechanical properties of specimens were investigated three-point flexural strength and toughness as a function of the Ag contents. The maximum flexural strength of the alumina/silver nanocomposite was 850 MPa for the 1 vol% composite, and also higher than monolith alumina as about 800 MPa at 3, 5, and 7 vol% Ag contents. Fracture toughness by single edged V-notch beam (SEVNB) was $4.05MPa{\cdot}m^{1/2}$ for the 3 vol% composite and maintained about $4.00MPa{\cdot}m^{1/2}$ at 5, and 7 vol% Ag content. Microstructure of fracture surface for each fracture specimens was observed. Due to the inhibition effect of alumina grain growth, the average grain size of nanocomposites depends on the content of Ag nano particles. The fracture morphology of nanocomposite with dislocation (sub-grain boundary) by silver nano-particles of second phases in the alumina matrix also showed transgranular fracture-mode compare with intergranular of monolith alumina. Thermal conductivity of specimens at room temperature was about 40 W/mK for the 1 vol% Ag content.

Keywords

References

  1. M. Nawa, T. Sekino, and K. Niihara, 'Microstructure and Mechanical Properties of $Al_2O_3$/Mo Nanocomposites,' Japan Society of Powder and Powder Metallurgy, 39 [12] 1104-08 (1992) https://doi.org/10.2497/jjspm.39.1104
  2. H. Awaji, 'Strength of Ceramic Materials,' Corona Pub., Tokyo, pp. 1-8, 2001
  3. S. M. Choi, S. Honda, T. Nishikawa, H. Awaji, T. Sekino, and K. Niihara, 'Strengthening Mechanism in Alumina Matrix Nanocomposites,' J. Soc. Mat. Sci., Japan, 52 [11] 1374-78 (2003) https://doi.org/10.2472/jsms.52.1374
  4. K. Niihara and A. Nakahira, 'Particulate Strengthened Oxide Ceramics-Nanocomposites,' pp. 637-44, Advanced Structural Inorganic Composites Ed. by, P. Vincenzini, Elsevier Science Publishers B. V., 1991
  5. N. Claussen, J. Steeb, and R. F. Pabst, 'Effect of Induced Microcracking on the Fracture Toughness of Ceramics,' Am. Ceram. Soc. Bull. 56 [6] 559 (1977)
  6. J. Lankford, 'Tensile Failure of Unflawed Polycrystalline $Al_2O_3$,' J. Mater. Sci., 13 351-7 (1978) https://doi.org/10.1007/BF00647780
  7. K. Niihara, 'New Design Concept of Structural Ceramics- Ceramic Nanocomposites,' J. Ceram. Soc. Jpn., 99 974-81 (1991) https://doi.org/10.2109/jcersj.99.974
  8. R. P. Wahi and B. Ilschner, 'Fracture Behavior of Composites Based on $Al_2O_3$-TiC,' J. Mater. Sci., 15 875-85 (1980) https://doi.org/10.1007/BF00552097
  9. F. F. Lange, 'Transformation Toughening,' J. Mater. Sci., 17 225-39 (1982) https://doi.org/10.1007/BF00809057
  10. P. F. Becher and G. C. Wei, 'Toughening Behavior in SiC-Whisker- Reinforced Alumina,' J. Am. Cram. Soc., 67 C- 267-69 (1984) https://doi.org/10.1111/j.1151-2916.1984.tb19694.x
  11. H. Kondo, T. Sekino, Y. H. Choa, and K. Niihara, 'Mechanical Properties of 3Y-$ZrO_2$/Ni Composites Prepared by Reductive Sintering,' Key Eng. Mater., 161-163 419-22 (1999) https://doi.org/10.4028/www.scientific.net/KEM.161-163.419
  12. L. Donzel and S. G. Roberts, 'Microstructure and Mechanical Properties of Cubic Zirconia (8YSZ)/SiC Nanocomposites,' J. Euro. Ceram. Soc., 20 2457-62 (2000) https://doi.org/10.1016/S0955-2219(00)00117-5
  13. T. Ohji, Y. K. Jeong, Y. H. Choa, and K. Niihara, 'Strengthening and Toughening Mechanisms of Ceramic Nanocomposites,' J. Am. Ceram. Soc., 81 [6] 1453-60 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02503.x
  14. H. Awaji and S.-M. Choi, 'Review: Ceramic-Based Nano- Composites in: S.G.,' Pandalai (Ed.), Recent Research Developments in Materials Science & Engineering, 1 585- 97 (2002)
  15. W. B. Chou and W. H. Tuan, 'Toughening and Strengthening of Alumina with Silver Inclusions,' J. Euro. Ceram. Soc., 15 291-95 (1995) https://doi.org/10.1016/0955-2219(95)90351-I
  16. M. Tokita, 'Development of Automatic FGM Manufacturing Systems by the Spark Plasma Sintering (SPS) Method, Functionally Graded Materials 2000,' in: K. Trumble, K. Bowman, I. Reimanis, S. Sampath (Eds.), Ceramic Transactions, 114 283-90 (2001)
  17. H. Awaji and Y. Sakaida, 'V-notch Technique for Singleedge Notched Beam and Chevron Notch Methods,' J. Am. Ceram. Soc., 73 [11] 3522-23 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb06490.x
  18. R. W. Davidge, 'Effect of Microstructure on the Mechanical Properties of Ceramics, Fracture Mechanics of Ceramics vol. 2,' pp. 447-68, in: R. C. Bradt, D. P. H. Hasselman, F. F. Lange (Eds.) Plenum Press, New York, 1973

Cited by

  1. Toughening mechanism and frontal process zone size of ceramics vol.117, pp.1365, 2009, https://doi.org/10.2109/jcersj2.117.623