실험 해석 과정에서 체계적 비유 사용에 의한 중학교 영재반 학생의 효소 개념 변화

Gifted Middle School Students' Conceptual Change of an Enzyme by Using Systematic Analogies during the Interpretation of Experimental Results

  • 발행 : 2007.04.30

초록

물질대사는 생명 현상을 이해하는데 중추적 위치를 차지하고 있지만, 개념의 추상적 성격으로 인해 학생들이 이해하기 어려운 내용으로 알려져 있다. 이 연구의 목적은 (1) 효소 반응 실험의 결과 해석 과정에서 체계적 비유를 적용한 후에 나타난 학생의 개념 변화를 알아보고, (2) 학생들의 개념 변화에 기여한 체계적 비유의 역할을 확인하며, (3) 개념의 존재론적 속성에 따른 학생들의 개념 이해 정도 차이를 알아보는 것이다. 이러한 연구 목적을 위해 중학교 과학영재 34명을 대상으로 실시한 사전검사와 사후검사 결과, 실험보고서 내용, 수업 후에 뚜렷한 개념 변화를 보인 4명의 학생들을 대상으로 한 면담 결과 등의 자료를 수집하여 분석하였다. 그 결과 수업 후에 활성화 에너지 감소에 의한 효소 반응 촉진 기능 이해, 효소 구조에 따른 반응 속도 변화 이해, 효소 작용 기작에 대한 이해 정도가 전반적으로 향상되었지만, 개념의 존재론적 속성에 따라 학생의 이해 정도에 차이가 있는 것으로 나타났다. 사건 범주에 속하는 효소의 기능에 대한 이해 정도는 높았지만, 평형 범주에 속하는 효소 반응 기작에 대한 이해 정도는 낮게 나타났다. 효소 개념은 이처럼 평형 범주의 속성을 가지고 있어 학생들의 이해가 어렵지만, 본 연구에서 일부 학생들이 사건 범주의 효소 개념에서 평형 범주의 효소 개념으로 변화를 보였으며, 이러한 개념 변화에 체계적 비유가 기여한 것으로 나타났다.

Metabolism is one of the pivotal biology concepts, but many students have difficulty understanding it. The purposes of this study were (1) to explore 8th graders' conceptual change of an enzyme after classes of experimenting enzyme reaction and interpreting data using systematic analogies, (2) to discover the role of systematic analogies to enhance students' understanding, and (3) to explain students' difficulty understanding concepts as the ontological features. Systematic analogies were designed to encourage students to interpret their lab activities on enzyme reaction rates. Data were collected by using the pre-test and the post-test of open-ended form, students' worksheets, and interviews with students. After classes, the number of students to engender scientific conceptions about the function of enzyme, its structure, and its mechanism has increased. But more students failed to understand the reaction mechanisms having ontological features of equilibration processes than to understand the function of enzyme having ontological features of event-like processes. Even though the concepts of enzymes are hard to grasp owing to their ontological attributes of equilibration processes, a part of students' conceptions successfully progressed from the idea belonging to event-like processes to one belonging to equilibration processes. And systematic analogies were found to contribute in enhancing students' conceptual change of the enzyme reaction.

키워드

참고문헌

  1. 김희정, 조연순 (2001). 초등학생의 광합성 개념학 습에서 TWA 비유 수업모형의 효과. 한국과학교육학회지, 21 (2),444-458
  2. 민진선 (2004). 유전과 전화에 관한 학생들의 대안 개념 분석. 서울대학교 대학원 석사 학위 논문
  3. 박지영 (2003) 고등학교 학생들의 생태계 개념에 대 한 존재론적 평가. 서울대학교 대학원 석사 학위 논문
  4. 박종석, 조희형 (1987). 고등학생들의 유전에 대한 오인의 확인 및 유전학 지도 방향. 과학교육, 2월호, 68-74
  5. 심규철, 안중임, 김현섭 (2004) 국민공통기본교육과 정 과학과 생명영역 물질대사 관련 탐구 활동 분석. 한국과학교육학회지, 24(2), 202-215
  6. 정영란 (1998). 광합성의 기본 개념에 관한 학생들 의 이해도 조사 및 오개념 분석. 한국생물교육학회지, 26(1), 1-7
  7. 조희형 (1985). 고등학교 생물과정에 필요한 기본개 념의 확인 및 결정. 한국과학교육학회지, 5(1), 11-17
  8. Bishop, B. A. (1990). Student conceptions of natural selection and its role in evolution. Journal of Research in Science Teaching, 27(5), 415-427 https://doi.org/10.1002/tea.3660270503
  9. Brown, D. E., & Oement, J. (1989). Overcoming misconceptions via analogical reasoning: Abstract transfer versus explanatory model construction. Instructional Science, 18, 237-261 https://doi.org/10.1007/BF00118013
  10. Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. N. Giere (Ed.), Cognitive model of science. University of Minnesota Press
  11. Chi, M T. H. (2000). Cognitive understanding levels. In, Kazdin, A. E,(Ed,), Encyclopedia of psychology, Vol, 2. pp. 172-175. Oxford University Press
  12. Chi, M. T .H., Slotta, J. D., & de Leeuw, N. A. (1994). From things to processes: A Theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27-43 https://doi.org/10.1016/0959-4752(94)90017-5
  13. Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education, 75, 649-672 https://doi.org/10.1002/sce.3730750606
  14. Dupin, J., & Johsua, S. (1989). Analogies and 'modeling analogies' in teaching: Some examples in basic electricity. Science Education, 73, 207-224 https://doi.org/10.1002/sce.3730730207
  15. Friedler, Y, & Tamir, P. (1990). Life in science laboratory classroom at secondary level. In E. Hegarty -Hazel (Ed.), The student laboratory and the science curriculum (pp. 337-354). London: Routledge
  16. Gentner, D. (1989). The mechanisms of analogical learning. In S. Vosniadou & A Ornony(Eds.). Similarity and analogical reasoning(pp. 197-241). Cambridge: Cambridge University Press
  17. Gentner, D; & Toupin, C. (1986). Systematicity and surface similarity in the development of analogy. Cognitive Science, 10, 277-300 https://doi.org/10.1207/s15516709cog1003_2
  18. Hart, C, Mulhall, P., Berry, A, Loughran, J., & Gunstone, R. (2000). What is the purpose of this experiment? Or can students learn something from doing experiments? Journal of Research in Science teaching, 37(7), 655-675 https://doi.org/10.1002/1098-2736(200009)37:7<655::AID-TEA3>3.0.CO;2-E
  19. Heywood, D. (2002). The place of analogies in science education. Cambridge Journal of Education, 32(2), 233-247
  20. Hodson, D, (1990). A critical look at practical work in school science. School Science Review, 71(256), 33-40
  21. Holyoak, K. J., & Koh, K (1987). Surface and structural similarity in analogical transfer. Memory & Cognition, 15(4), 332-340 https://doi.org/10.3758/BF03197035
  22. Klopfer, L. E. (1990). Learning scientific inquiry in the school laboratory. In E. Hegarty-Hazel (Ed.). The student laboratory and the science curriculum (pp. 95-118). London: Routledge
  23. Millar, R. H (1998). Rhetoric and reality: Vlhat practical work in science education is really for. In J. J. Wellington (Ed.), Practical work in school science (pp. 16-31). NY: Routledge
  24. Osborne, R, & Freyberg, P. (EdsJ (1985). Learning in science: The implications of children's science. Auckland, New Zealand: Heinemann
  25. Pittman, K. M (1999). Student-generated analogies: Another way of knowing? Journal of Research in Science Teaching, 36, 1-22 https://doi.org/10.1002/(SICI)1098-2736(199901)36:1<1::AID-TEA2>3.0.CO;2-2
  26. Thiele, R. B., & Treagust, D. F. (1991). Using analogies in secondary chemistry teaching. The Australian Science Teachers Journal, 37(2), 4-14
  27. Treagust, D. F. (1993). The evolution of an approach for using analogies in teaching and learning science. Research in Science Education, 23, 293-301 https://doi.org/10.1007/BF02357073
  28. Treagust, D. F., Harrison, A. G., & Venville, G. T. (1996). Using an analogical teaching approach to engender conceptual change. International Journal of Science Education, 18, 213-229 https://doi.org/10.1080/0950069960180206
  29. Tyson, L. M, Venville, G. J., Harrison, A. G, & Treagust, D. F. (1996). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81, 387-404 https://doi.org/10.1002/(SICI)1098-237X(199707)81:4<387::AID-SCE2>3.0.CO;2-8
  30. Venville, G . J., & Treagust, D. F. (1998). Exploring conceptual change in genetics using a multidimensional interpretive framework. Journal of Research in Science Teaching, 35, 1031-1055.1-57 https://doi.org/10.1002/(SICI)1098-2736(199811)35:9<1031::AID-TEA5>3.0.CO;2-E
  31. Wallace, C. S., Tsoi, M. Y, Calkin, J., & Darley, M (2003). Learning from inquiry-based laboratories in nonmajor biology: An interpretive study of the relationships among inquiry experience, epistemologies, and conceptual growth. Journal of Research in Science Teaching, 40, 986 -1024 https://doi.org/10.1002/tea.10127
  32. Weller, C. M (1970). The role of analogy in teaching science. Journal of Research in Science Teaching, 7, 113-119 https://doi.org/10.1002/tea.3660070207
  33. Wittrock, M. C., & Alesandrini, K. (1990). Generation of summaries and analogies and analytic and holistic abilities. American Educational Research Journal, 27, 489 -502 https://doi.org/10.3102/00028312027003489
  34. Wong, E. D. (1993a). Selr-generated analogies as a tool for constructing and evaluating explanations of scientific phenomena. Journal of Research in Science Teaching, 30, 367-380 https://doi.org/10.1002/tea.3660300405
  35. Wong, E. D. (1993b). Understanding the generative capacity of analogies as a tool for explanation. Journal of Research in Science Teaching, 30, 1259-1272 https://doi.org/10.1002/tea.3660301008
  36. Yerrick, R. K, Doster, E., Nugent, J. S., Parke, H. M, & Crawley, F. E. (2003). Social interaction and the use of analogy: An analysis of preservice teacher's talk during physics inquiry lessons. Journal of Research in Science Teaching, 40, 443-463 https://doi.org/10.1002/tea.10084