Antioxidant Activity of Momordica charantia L. Extracts

여주 추출물의 항산화 활성

  • Park, Yeol (Department of Biotechnology, Collage of Nature Science, Chosun University) ;
  • Boo, Hee-Ock (Department of Biology, Collage of Nature Science, Chosun University) ;
  • Park, Young-Lan (Department of Anatomy, Collage of Medicine, Chosun University) ;
  • Cho, Dong-Ha (School of Bioscience & Biotechnology, Kangwon National University) ;
  • Lee, Hyun-Hwa (Department of Biology, Collage of Nature Science, Chosun University)
  • 박열 (조선대학교 자연과학대학 생명공학과) ;
  • 부희옥 (조선대학교 자연과학대학 생물학과) ;
  • 박영란 (조선대학교 의과대학 해부학교실) ;
  • 조동하 (강원대학교 생명공학부) ;
  • 이현화 (조선대학교 자연과학대학 생물학과)
  • Published : 2007.02.28

Abstract

This study was carried out to determine the antioxidant activity and vitamin C contents in plant extracts of the Momordica charantia L. The vitamin C was detected as the highest content in immature fruit (92.2 mg/100 g), while the content in stem (2.5 mg/100 g) was lower 40 times than that of immature fruit. Antioxidant activity for the dried sample was investigated by TBA method. The lowest TBARS values were obtained from extracts of dried leaf and followed by ascorbic acid and BHT, showing that the extracts from dried leaf possess the strongest antioxidant activity. Compared with fresh tissues, SOD activity, ATX activity and CAT activity were high level in the dried tissue. These results suggest that the Momordica charantia L. would be a promising antioxidant source as an alternative antioxidant, based on natural plant resources.

여주의 부위별 항산화 활성 및 비타민 C의 함량을 조사하였다. 각 부위별 비타민 C의 함량을 보면 미성숙과에서 92.2mg/100 g으로 가장 높게 나타났는데, 이는 줄기에서의 2.5mg/100 g 보다 40배 이상 높은 함량이다. 여주의 각 부위별 메탄올 추출물을 TBA 방법으로 항산화효과를 측정한 결과 잎 추출물에서 0,05로 가장 높은 항산화 효능을 나타냈으며, 이는 추출물이 ascorbic acid와 BHT보다도 항산화력이 우수함을 알 수 있었다. 또한 각 부위별 건조시료와 생체시료에서의 SOD, APX 그리고 CAT의 활성을 비교한 결과 건조시료인 경우가 생체시료에서보다 활성이 더 높게 나타났다. 이러한 결과들은 여주가 식물유래 천연 항산화제로서의 높은 가치를 지니고 있으며 앞으로 이에 대한 개발 가능성이 매우 높음을 시사해 주고 있다.

Keywords

References

  1. Aebi HE (1983) Catalase: in methodes of enzymatic analyses (Bergmeyer, H.U. ed.). Verlag Chemie. Weinheim. 3:273-282
  2. Allen RD, Webb RP, Schake SL (1997) Use of transgenic plants to study antioxidants defense. Free Rad. Biol. Med. 23:473-479 https://doi.org/10.1016/S0891-5849(97)00107-X
  3. Alscher RG, Hess JL (1993) Antioxidants in higher plants. CRC Press, Boca Raton, 1-174
  4. Asada K (1999) The water-water cycle in chloroplasts: Scavenging of active oxygen and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:601-639 https://doi.org/10.1146/annurev.arplant.50.1.601
  5. Beauchamp C, Fridovich J (1971) Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44:276-287 https://doi.org/10.1016/0003-2697(71)90370-8
  6. Beloin N, Gbeassor M, Akpagana K, Hudson, J, De Soussa K, Koumaglo K, Arnason JT (2005) Ethnomedicinal uses of Momordica charantia (Cucurbitaceae) in Togo and relation to its phytochemistry and biological activity. Journal of Ethnopharmacology 96(1-2):49-55 https://doi.org/10.1016/j.jep.2004.09.019
  7. Bourinbaiar AS, Lee-Huang S (1995a) Acrosin inhibitor, 4'-acetamidophenyl 4-guanidinobenzoate, an experimental vaginal contraceptive with anti-HIV activity. Contraception 51(5):319-32 https://doi.org/10.1016/0010-7824(95)00094-Q
  8. Bourinbaiar AS, Lee-Huang S (1995b) Potentiation of anti-HIV activity of anti-inflammatory drugs, dexamethasone and indomethacin, by MAP30, the antiviral agent from bitter melon. Biochemical & Biophysical Research Communications 208(2):779-785 https://doi.org/10.1006/bbrc.1995.1405
  9. Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutases and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:83-116 https://doi.org/10.1146/annurev.pp.43.060192.000503
  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  11. Chon SU, Kim, YM, Han SK, Choi SK (2004) Antioxidative Fig. 4. CAT activity in dry sample (A) and fresh sample (B) in Momordica charandia L. effects of several compositae plants. Kor. J. Plant Res. 17(1):14-19
  12. Feri D, Ames BN (1991) Ascorbic acids as protects plasma lipids against oxidative damage. Nutrition and Cancer 15:250-252
  13. Giron LM, Freire V, Alonzo A, Caceres A (1991) Ethnobotanical survey of the medicinal flora used by the Caribs of Guatemala. Journal of Ethnopharmacology 34(2-3):173-187 https://doi.org/10.1016/0378-8741(91)90035-C
  14. Grover JK, Yadav SP (2004) Pharmacological actions and potential uses of Momordica charantia: a review. Journal of Ethnopharmacology 93(1):123-132 https://doi.org/10.1016/j.jep.2004.03.035
  15. Hamato N, Koshiba T, Pham TN, Tatsumi Y, Nakamura D, Takano R, Hayashi K, Hong YM, Hara S (1995) Trypsin and elastase inhibitors from bitter gourd (Momordica charantia LINN.) seeds: purification, amino acid sequences, and inhibitory activities of four new inhibitors. Journal of Biochemistry 117(2):432-437 https://doi.org/10.1093/jb/117.2.432
  16. Heath RL (1987) The biochemistry of ozone attack on the plasma membrane of plant cells. Adv. Phytochem. 21:29-54
  17. Jakeman MJ, Edwards RH, Symonns MC (1993) Electron spin resonance studies of intact mammalian skeletal muscle. Biochem. Biophy. Acta. 874(2):185-190
  18. Ji LL, Fu R, Mitchell EW (1992) Glutathione and antioxidant enzymes in skeletal muscle: effect of fiber type and exercise intensity. J. Applied Physiology 73(5):1854-1859 https://doi.org/10.1152/jappl.1992.73.5.1854
  19. Kang NJ, Kwon JG, Lee HC, Jeong HB, Kim, HT (2003) Antioxidant Enzymes as Defense Mechanism against Oxidative Stress Induced by Chilling in Cucurbita ficifolia Leaves. J. Kor. Sod. Sci. 44(5):605-610
  20. Nakano Y, Asada K (1981) Hydrogen peroxide os scavenged by ascorbate-specific peroxidase in spinach chloroplast. Pland Cell Physiol. 22:867-880
  21. Parkash A, Ng TB, Tso WW (2002) Purification and characterization of charantin, a napin-like ribosome-inactivating peptide from bitter gourd (Momordica charantia) seeds. Journal of Peptide Research 59(5):197-202 https://doi.org/10.1034/j.1399-3011.2002.00978.x
  22. Park PS (1989) Investigation of Vitamin C in the Lines of Bitter Gourd(Momordica Charantia L.) J. Chinju Nat. Agri. & For. Jr. Coll. 24:235-238
  23. Park YJ, Kang M., Kim JI, Park OJ, Lee MS, Jang DJ (1995) Changes of Vitamin C and Superoxide Dismutase(SOD)-like Activity of Persimmon Leaf Tea by Processing Method and Extraction Condition. Kor. J. Food Sci. Technol. 27(3):281-285
  24. Rathi SS, Grover JK, Vats V (2002) The effect of Momordica charantia and Mucuna pruriens in experimental diabetes and their effect on key metabolic enzymes involved in carbohydrate metabolism. Phytotherapy Research 16(3):236-243 https://doi.org/10.1002/ptr.842
  25. Schmourlo G, Mendonca-Filho RR, Alviano CS, Costa SS (2005) Screening of antifungal agents using ethanol precipitation and bioautography of medicinal and food plants. Journal of Ethnopharmacology 96(3):563-568 https://doi.org/10.1016/j.jep.2004.10.007
  26. Virdi J, Sivakami S, Shahani S, Suthar AC, Banavalikar MM, Biyani MK (2003) Antihyperglycemic effects of three extracts from Momordica charantia. Journal of Ethnopharmacology 88(1):107-111 https://doi.org/10.1016/S0378-8741(03)00184-3
  27. Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393(6683):365-369 https://doi.org/10.1038/30728
  28. Witte VC, Krause ME, Bailey T (1970) A new extraction methord for determining 2-thiobarbituric acid values of pork and beef during storage. J. Food Sci. 35:582-587 https://doi.org/10.1111/j.1365-2621.1970.tb04815.x
  29. Zong RJ, Morris L, Cantwell M (1995) Postharvest physiology and quality of bitter melon (Momordica charantia L.). Postharvest Biology and Technology 6(1-2):65-72 https://doi.org/10.1016/0925-5214(94)00041-P