Reductive Dechlorination of Chlorinated Phenols in Bio-electrochemical Process using an Electrode as Electron Donor

전극을 전자공여체로 이용한 생물전기화학공정에서의 염소화페놀의 탈염소화

  • Jeon, Hyun-Hee (Graduate School of Energy and Environment, Seoul National University of Technology) ;
  • Pak, Dae-Won (Graduate School of Energy and Environment, Seoul National University of Technology)
  • 전현희 (서울산업대학교 에너지 환경 대학원) ;
  • 박대원 (서울산업대학교 에너지 환경 대학원)
  • Published : 2007.06.30

Abstract

It was investigated whether an electrode could serve as an electron donor for biological reductive dechlorination of chlorinated phenols in the bio-electrochemical process. There was no dechlorination in the absence of current and scanning electron microscope image showed that the electrode surface was covered with microorganisms. As a result, the electrode attached cells was responsible for reductive dechlorination. Also, initial high chlorinated phenol concentration such as $437mg/{\ell}$ was rapidly reduced within 5 hours. The maximum dechlorination rate using Monod equation was $5.95mg{\ell}$-h($cm^2$ (electrode surface area)) in the bio-electrochemical reactor.

미생물이 환원된 전극을 전자공여체로 이용하고, 염소화페놀을 전자수용체로 이용하는 새로운 혐기성 호흡의 생물전기화학공정을 통해 2,6-DCP을 탈염소시킬 수 있는지를 조사하였다. 이를 위해 전류의 유무에 따른 농도변이와 전극 표면을 주사전자현미경으로 관찰한 결과, 전류가 흐르는 경우에만 염소화페놀이 완전히 제거됨을 보였으며, 전극표면에 생물막이 형성된 것을 통해서 전극이 전자공여체 역할을 함으로서 탈염소시킬 수 있음을 증명하였다. 또한, 본 연구의 생물전기화학공정을 통해서 고농도의 염소화페놀 적용도 가능한지를 조사하고 Monod식을 이용하여 최대 탈염소화 속도를 산정하였는데 본 실험의 최대초기농도인 $457mg/{\ell}$까지 분해가 가능하였으며, 최대탈염소화 속도는 $5.95mg/{\ell}$-h($cm^2$ (electrode surface area))이었다.

Keywords

References

  1. Armenante, P. M., D. Kafkewitz, G. A. Lewandowski, and C. J. Jou (1999), Anaerobic-aerobic treatment of halogenated phenolic compounds, Waler Res. 33, 681-692
  2. Hwang, H. M., R. E. Hodson, and R. F. Lee (1989), Degradation of phenol and chlorophenols sunlight and microbes in estuarine water, Environ. Sci. Technol. 20, 1002-1007 https://doi.org/10.1021/es00152a006
  3. Gibson, S. A. and J. M. Suflita (1986), Extrapolation of biodegradation results to groundwater aquifers: reductive dehulogenation of aromatic compounds, Appl. Environ. Microbiol. 52, 681-688
  4. ZHang, X. and J. Wiegel (1990), Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments, Appl. Environ. Microbiol. 56, 1119-1127
  5. Lee, H. C., J. H. In, J. H. Kim, K. Y. Hwang, and C. H. Lee (2005), Kinetic analysis for decomposition of 2,4-dichlorophenol by supercritical water oxidation, Kor. J. Chem. Eng. 22, 882-888 https://doi.org/10.1007/BF02705669
  6. Kim, M. H. and O. J. Hao (1999), Cometabolic degradation of chlorophenols by Acinetobacter species, Water Res. 33, 562-574 https://doi.org/10.1016/S0043-1354(98)00228-0
  7. Faya, F., P. M. Armenante, and D. Kafkewitz (1995), Aerobic degradation and dechlorination of 2-chlorophenol, 3-chlorophenol and 4-chlorophenol by a Pseudomonas pickettii strain, Lett. Appl. Microbiol. 21, 307-312 https://doi.org/10.1111/j.1472-765X.1995.tb01066.x
  8. Mohn, W. W. and K. J. Kennedy (1992), Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1, Appl. Environ. Microbiol. 58, 1367-1370
  9. Reddy, G. V., M D. Sollewijn Gelpke, and M. H. Gold (1998), Degradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium: involvement of reductive dechlorination, J. Bacteriol. 180, 5159-5164
  10. Cheng, H., K. Scott, and P. A. Christensen (2004), Engineering aspects of electrochemical hydrodehalogenation of 2,4-dichlorophenol in a solid polymer electrolyte reactor, Appl. Catalysis. 261, 1-6 https://doi.org/10.1016/j.apcata.2003.10.021
  11. Cong, Y. Q., Z. C. Wu, and T. F. Tan (2005), Dechlorination by combined electrochemical reduction and oxidation, J. Zhejiang. Univ. Sci 68, 563-568
  12. Cheng, I. F., Q. Fernando, and N. Korte (1997), Electrochemical dechlorination of 4-chlorophenol to phenol, Environ. Sci, Technol. 31, 1074-1078 https://doi.org/10.1021/es960602b
  13. Weber, E. J. (1996), Iron-mediated reductive transformations: investigation of reaction mechanism, Environ. Sci, Technol. 30, 716-719 https://doi.org/10.1021/es9505210
  14. Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim (2002), A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme microb. Technol, 30, 145-152 https://doi.org/10.1016/S0141-0229(01)00478-1
  15. Bond, D. R. and D. R. Lovley (2003), Electricity Production by Geobacter sulfurreducens attached to electrodes, Appl. Environ. Microbiol, 69, 1548-1555 https://doi.org/10.1128/AEM.69.3.1548-1555.2003
  16. Chaudhuri, S. K. am D. R. Lovley (2003), Electricity generation by direct oxidation of glucose in mediatorless rnicrobial fuel cells, Nature Biotechnol. 21, 1229-1232 https://doi.org/10.1038/nbt867
  17. Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley (2002), Electrode-reducing microorganisms that harvest energy from marine sediments, Science 295, 483-485 https://doi.org/10.1126/science.1066771
  18. Gregory, K. B., D. R. Bond, and D. R. Lovley (2004), Graphite electrodes as electron donors for anaerobic respiration, Environ Microbiol. 6, 596-604 https://doi.org/10.1111/j.1462-2920.2004.00593.x
  19. Steinle, P., G. Stucki, R. Stettler, and K. W. Hanselmann (1998), Aerobic mineralization of 2,6-dichlorophenol by Ralstonia sp. Strain RK1, Appl. Environ. Microbiol. 64, 2566-2571
  20. Mohn, W. Wl. and K. J. kennedy (1992), Limited degradation of chlorophenols by anaerobic sludge granules, Appl. Environ. Microbiol. 58, 2131-2136