The Early Detection of the Protein Toxin using Sanification and Fluorescent Dye in the Field

현장에서 초음파 파쇄와 형광시약을 이용한 단백질 독소의 조기 탐지

  • Published : 2007.02.28

Abstract

This study was carried out to establish the optimum disruption condition of a sonificator for the protein toxin for the purpose of developing automatic biological agent detector equipped a sonificator. One of the best-known collisional quenchers is molecular oxygen, which quenches almost all known fluorophores. The sonification does an excellent job of degassing, which decreased the quenching effect and increased the fluorescence quantity. The fluorescence measurement for the protein using 0.7 X fluorescent dye concentration and above must be done in 1 minute and the fluorescence measurement for the protein using 0.3 X fluorescent dye concentration and below has to be done between 2 and 3 minute. The fluorescence quantity of the sonificatied protein sample was much higher that of the non-sonificatied protein sample. Sonificating the sample turned out to be favorable for the fluorescence measurement when measuring at the low protein concentration.

본 연구에서는 sonificator를 장착하여 세포막을 파쇄하고 현장에서 형광을 이용하여 조작이 간편하고 단시간에 DNA와 단백질을 동시에 측정할 수 있는 자동화된 형광기를 개발하기 위하여 단백질을 측정하는데 최적의 파쇄조건을 확립하고자 하였다. 용액 중에 녹아 있는 공기 중의 oxygen은 collisional quenching을 일으키는데 sonification이나 가열처리를 시키면 oxygen이 제거되어 quenching 효과가 크게 감소되어 높은 형광값을 나타내었다. 0.7 X 이상의 형광시약 농도에서는 반응시작 후 1분 이내에 측정해야 하며, 0.3 X 이하의 형광시약 농도에서는 반응시작 후 2$\sim$3분 사이에 반응을 시킨 후 측정하는 것이 바람직한 것으로 나타났다. $100{\mu}g/m{\ell}$ 이상의 BSA 농도에서는 형광시약이 포화되었으며, 시료를 sonification시키면 단백질이 변성되어 눈에 보일 정도로 불투명해져서 시료 용액의 불투명도로 인해 형광 값이 감소되는 경향을 나타내었으며, $1{\mu}g/m{\ell}$ 이하의 BSA 시료에서는 sonification을 시키지 않은 시료보다 sonification을 시켰을 때 $0.125{\mu}g/m{\ell}$의 BSA를 훨씬 더 구분이 잘 되어 낮은 단백질 농도에서는 sonification시키는 것이 훨씬 유리한 것으로 나타났다.

Keywords

References

  1. Smith, P. K., R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, and N. M. Goeke (1985), Measurement of protein using bicinchoninic acid, Anal. Biochem. 150, 76-85 https://doi.org/10.1016/0003-2697(85)90442-7
  2. Bradford, M. M. (1976), A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall (1951), Protein measurement with the folin phenol reagent, J. Biol. Chem. 193, 265-275
  4. Udenfriend, S., S. Stein, P. Bohlen, W. Dairman, W. Leimgruber, and M. weigele (1972), Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range, Science 178, 871-872 https://doi.org/10.1126/science.178.4063.871
  5. You, W. W., R. P. Haugland, D. K. Ryan, and R. P. Haugland (1997), 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde, a reagent with broad dynamic range for the assay of proteins and lipoprotein in solution, Anal. Biochem. 244, 277-282 https://doi.org/10.1006/abio.1996.9920
  6. Benson, J. R. and P. E. Hare (1975), o-phthaldialdehyde: fluorogenic detection of primary amines in rhc picomole range. Comparison with fluorescamine and ninhydrin, Proc. Natl. Acad. USA 72, 619-622
  7. Daban, J. R. S. Bartolome, and M. Samso (1991), Use of the hydrophobic probe nile red for the fluorescent staining of protein bands in sodium dodecyl sulfate-polyacrylamide gels, Anal. Biochem. 199, 162-168 https://doi.org/10.1016/0003-2697(91)90084-7
  8. Daban, J. R. S. Bartolome, and M. Sumso (1991), Use of the hydrophobic probe nile red for the fluorescent staining of protein bands in sodium dodecyl sulfate-polyacrylamide gels, Anal. Biochem. 199, 169-174 https://doi.org/10.1016/0003-2697(91)90085-8
  9. Steinberg, T. H., L. J. Jones, R. P. Haugland, and V. L. Singer (1996), SYPRO orange and SYPRO red protein gel stains: one-step fluorescent staining of denaturing gels for detection of nanogram levels of protein, Anal. Biochem. 239, 223-237 https://doi.org/10.1006/abio.1996.0319
  10. Steinberg, T. H., R. P. Haugland, and V. L. Singer (1996), Applications of SYPRO orange and SYPRO red protein gel stains, Anal. Biochem. 239, 238-245 https://doi.org/10.1006/abio.1996.0320
  11. Haugland, R. P., V. L. Singer, L. J. Jones, and T. H. Steinberg (1997), Inventors, Molecular Probes; assignee, Non-specific protein staining using merocyanine dyes, US patent 5 616 502, Apr. 1
  12. Jones, L. J., R. P. Haugland, and V. L. Singer (2003), Development and characterization of the NanoOrangc protein quantitation assay: A fluorescence-based assay of proteins in solution, BioTechniques 34(4), 850-861
  13. Ha, Y. C., K. B. Choi, and J. D. Choi (2006), The early detection of the gram negative bacteria using sonification and fluorescent dye in the field, Kor. J. Biotechnol. Bioeng. 21(5), 341-346
  14. Ha, Y. C., K. B. Choi, and J. D. Choi (2006), The early detection of the gram positive bacteria using sonification and fluorescent dye in the field, Kor. J. Biotechnol. Bioeng. 21(5), 347-352