A Study on NO Emission Behavior through Preferential Diffusion of $H_2$ and H in $CH_4-H_2$ Laminar Diffusion Flames

메탄-수소 층류확산화염에서 $H_2$와 H의 선호확산이 NO 거동에 미치는 영향에 관한 연구

  • Park, Jeong (School of Mechanical Engineering, Pukyung National University) ;
  • Kwon, Oh-Boong (School of Mechanical Engineering, Pukyung National University) ;
  • Yun, Jin-Han (Environment & Energy Research Division, Korea Institute of Machinery and Materials) ;
  • Keel, Sang-In (Environment & Energy Research Division, Korea Institute of Machinery and Materials)
  • 박정 (부경대학교 기계공학부) ;
  • 권오붕 (부경대학교 기계공학부) ;
  • 윤진한 (한국기계연구원 청정환경기계연구센터) ;
  • 길상인 (한국기계연구원 청정환경기계연구센터)
  • Published : 2007.09.15

Abstract

A study has been conducted to clarify NO emission behavior through preferential diffusion effects of $H_2$ and H in methane-hydrogen diffusion flames. A comparison is made by employing three species diffusion models. Special concerns are focused on what is the deterministic role of the preferential diffusion effects in flame structure and NO emission. The behavior of maximum flame temperatures with three species diffusion models is not explained by scalar dissipation rate but the nature of chemical kinetics. The preferential diffusion of H into reaction zone suppresses the populations of the chain carrier radicals and then flame temperature while that of $H_2$ produces the increase of flame temperature. These preferential diffusion effects of $H_2$ and H are also discussed about NO emissions through the three species diffusion models.

Keywords

References

  1. G. Yu, C. K. Law, and C. K. Wu, 'Laminar flame speeds of hydrocarbon+air mixtures with hydrogen addition', Combust. Flame, Vol. 63, 1984, pp. 339-347 https://doi.org/10.1016/0010-2180(86)90003-9
  2. G. A. Karim, I. Wierzba, and Y. Al-A1ousi, 'Methane-hydrogen mixtures as fuels', Int. J. Hydrogen Energy, Vol. 21, 1996, pp. 625-631 https://doi.org/10.1016/0360-3199(95)00134-4
  3. C. G. Fotache, T. G. Kreutz, and C. K. Law, 'Ignition of hydrogen-enriched methane by heated air', Combust. Flame, Vol. 110, 1997, pp. 429-440 https://doi.org/10.1016/S0010-2180(97)00084-9
  4. M. Karbasi and I. Wierzba, 'The effects of hydrogen addition on the stability limits of methane jet diffusion flames', Int. J. Hydrogen Energy, Vol. 23, 1998, pp. 123-129 https://doi.org/10.1016/S0360-3199(97)00031-1
  5. S. O. Bade Shresha and G. A. Karim, 'Hydrogen as an additive to methane for spark ignition engine applications', Int. J. Hydrogen Energy, Vol. 24, 1999, pp. 577-586 https://doi.org/10.1016/S0360-3199(98)00103-7
  6. C. G. Bauer and T. W. Forest, 'Effect of hydrogen addition on the performance of methane-fueled vehicles. Part I: effect on S.I. engine performance', Int. J. Hydrogen Energy, Vol. 32, 2007, pp. 55-70 https://doi.org/10.1016/j.ijhydene.2006.06.032
  7. J. -Y. Ren, W. Qin, F. N. Egolfopoulos, and T. T. Tsotsis, 'Strain-rate Effects on hydrogen -enhanced lean premixed combustion', Combust Flame, Vol. 124, 2001, pp. 717-720 https://doi.org/10.1016/S0010-2180(00)00205-4
  8. F. Halter, C. Chauveau, N. Djebaili-Chaumeix, and I. Gokalp, 'Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane-hydrogen -air mixtures', Proc. Combust. Inst., Vol. 30, 2005, pp. 201-208 https://doi.org/10.1016/j.proci.2004.08.195
  9. P. Dagaut and A. Nicolle, 'Experimental and detailed kinetic modeling study of hydrogen-enriched natural gas blend oxidation over extended temperature and equivalence ratio ranges', Proc. Combust. Inst., Vol. 30, 2005, pp. 2631-2638 https://doi.org/10.1016/j.proci.2004.07.030
  10. C. K. Law and O. C. Kwon, 'Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation', Int. J. Hydrogen Energy, Vol. 29, 2004, pp. 867-879 https://doi.org/10.1016/j.ijhydene.2003.09.012
  11. V. Di Sarli and A. Di Benedette., 'Laminar burning velocity of hydrogen-methane/air premixed flames', Int. J. Hydrogen Energy, Vol. 32, 2007, pp. 637-646 https://doi.org/10.1016/j.ijhydene.2006.05.016
  12. J. Park, S. I. Keel, and J. H. Yun, 'Addition effects of $H_2$ and $H_2O$ on flame structure and pollutant emission in methane-air diffusion flames', Energy & Fuels, in press
  13. S. lshiwka and Y. Sakai, 'Structure and tip-opening of ,laminar diffusion flames', Proc. Combust. Inst. Vol. 25, 1986, pp. 2821-1828
  14. Liu, F., Guo, H., Smallwood, G. J., and Gulder, O., 'Numerical study of the superadiabatic flame temperature phenomenon in hydrocarbon premixed flames', Proc. Combust. Inst., Vol. 29, 2002, pp. 1543-1550 https://doi.org/10.1016/S1540-7489(02)80189-4
  15. Ruf, B., Behrendt, F., Deutchmann, O., Kleditzsch, S., and Warnatz, J., 'Modeling of chemical deposition of diamond films from acetylene-oxygen flames', Proc. Combust. Inst. Vol. 28, 2000, pp. 1455-1461 https://doi.org/10.1016/S0082-0784(00)80362-8
  16. Liu, F. and Gulder, O., 'Effects of $H_2$ and H preferential diffusion and unity Lewis number on superadiabatic flame temperatures in rich premixed methane flames', Combust. Flame Vol. 143, 2005, pp. 264-281 https://doi.org/10.1016/j.combustflame.2005.03.018
  17. Zamashchikov, V. V., Namyatov, I. G., Bunev, V. A., and Babkin V. S., 'On the nature of superadiabatic temperatures in premixed rich hydrocarbon flames', Combust. Explosion Shock Waves, Vol. 40, 2004, pp. 32-5 https://doi.org/10.1023/B:CESW.0000013665.43183.10
  18. Drake, M. C. and Blint, R. J., 'Structure of Laminar opposed-flow diffusion flames with CO/$H_2$/$N_2$ fuel', Combust. Sci. Tech., Vol. 61, 1988, pp. 187-224 https://doi.org/10.1080/00102208808915763
  19. Wang, P., Hu, S., and Pitz, R., 'Numerical investigation of the curvature effects on diffusion flames', Proc. Combust. Inst., Vol. 31, 2007, pp. 989-996 https://doi.org/10.1016/j.proci.2006.07.223
  20. Takagi, T., Yoshikawa, Y., Komiyama, M., and Kinoshita, S., 'Studies on strained non-premixed flames affected by flame curvature and preferential diffusion', Proc. Combust. Inst., Vol. 26, 1996, pp. 1103-1110 https://doi.org/10.1016/S0082-0784(96)80325-0
  21. Lutz, A. E., Kee, R. J., Grear, J. F., and Rupley, F. M., 'A fortran program for computing opposed-flow diffusion flames', Sandia National Laboratories Report, SAND 96-8243, 1997
  22. Ju, Y., Guo, H., Maruta, K., and Liu, F., 'On the extinction limit and flammabiliy limit non-adiabatic stretched methane-air premixed flames', J. Fluid Mech., Vol. 342, 1997, pp. 315-334 https://doi.org/10.1017/S0022112097005636
  23. Kee, R. J., Rupley, F. M., and Miller, J. A., 'Chemkin II: a fortran chemical kinetics package for analysis of gas phase chemical kinetics', Sandia National Laboratories Report, SAND 89-8009B, 1989
  24. Kee, R. J., Dixon-Lewis, G., Wamatz, J., Coltrin, M. E., and Miller, J. A., 'A fortran computer code package for the evaluation of gas-phase multi-component transport', Sandia National Laboratories Report, SAND 86-8246, 1994
  25. Chellian, H. K., Law, C. K., Ueda, T., Smooke, M. D., and Williams, F. A., 'An experimental and theoretical investigation of the dilution, pressure and flow-field effects on the extinction condition of methane-air-nitrogen diffusion flames', Proc. Combust. Inst., Vol. 23, 1990, p. 503
  26. G. P. Smith, D. M. Golden, N. W. Frenklach, M. B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Dong, W. C. Gardiner, Jr.-VV. Lissianski, and Z. Qin, 'The 'GRI-Mech 3.0' chemical kinetic mechanism', , 2007
  27. Westbrook, C. K. and Dryer, F. L., 'Chemical kinetic modeling of hydrocarbon combustion', Prog. Energy Combust. Sci., Vol. 10, 1984, pp. 1-57 https://doi.org/10.1016/0360-1285(84)90118-7
  28. R. W. Bilger, 'The structure of turbulent nonpremixed flames', Proc. Combust. Inst., Vol. 22, pp. 475-488
  29. M. Nishioka, S. Nakagawa, Y. Ishikawa, and T. Takeno, 'NO emission characteristics of methane-air double flame', Combust. Flame, Vol. 98, 1994, pp. 127-36 https://doi.org/10.1016/0010-2180(94)90203-8
  30. J. Park, J. S. Park, H. P. Kim, J. S. Kim, J. G. Choi, H. C. Cho, K. W. Cho, H. S. Park, 'NO emission behavior in oxy-fuel combustion recirculated with carbon dioxide', Energy & Fuels, Vol. 21, 2007, pp. 121-129 https://doi.org/10.1021/ef060309p