DOI QR코드

DOI QR Code

A Study on Precuring Condition of the 2-step Manufacturing Method for PEMFC Composite Bipolar Plates

PEMFC용 복합소재 분리판을 위한 2단계 제조공법의 예비성형 조건에 대한 연구

  • 허성일 (포항공과대학교 기계공학과 대학원) ;
  • 오경석 (포항공과대학교 기계공학과 대학원) ;
  • 장준호 (포항공과대학교 기계공학과 대학원) ;
  • 양유창 (현대자동차 환경기술연구소) ;
  • 한경섭 (포항공과대학교 기계공학과)
  • Published : 2007.04.30

Abstract

The 2-step manufacturing method consisting of preforming and stamping processes was developed to manufacture composite bipolar plates for PEMFCS. The preform was composed of expanded graphite, graphite flake and phenol resin. Procuring conditions were optimized by checking the electrical conductivity, flexural strength and microstructure. Procuring temperature $(100^{\circ}C)$ slightly above the melting point of phenol powders $(90^{\circ}C)$ induced moderate curing, but also prevented excessive curing. Preforms utilizing the tangled structure of expanded graphite were easily fabricated at low pressure of 0.07-0.28MPa. The proper procuring time, 5min, was determined to fabricate the preform stably because insufficient and excessive procuring deteriorated the flexural strength of composite bipolar plates.

본 연구에서는 고분자 전해질 연료전지(PEMFC)용 복합소재 분리판의 제작을 위해, 예비성형과 스탬핑 공정으로 이루어지는 2단계 제조공법을 개발하고 예비성형 조건이 소재의 물성에 미치는 영향을 고찰하였다. 예비성형체는 팽창흑연, 흑연분말, 페놀수지를 이용하여 제조되었으며, 예비성형 공정은 전기 전도도, 굽힘 강도와 미세 구조의 분석을 통해 최적화되었다. 예비성형은 페놀수지의 지나친 경화를 막기 위해 페놀 분말의 녹는점인 $90^{\circ}C$보다 약간 높은 $100^{\circ}C$에서 이루어졌다. 본 연구에서 개발된 예비성형체는 팽창흑연의 서로 잘 얽히는 성질로 인해 0.07-0.28MPa의 낮은 압력에서도 쉽게 제조되었다. 부족하거나 과도한 예비경화는 복합소재 분리판의 강도 저하를 야기하기 때문에, 예비성형체를 안정적으로 제조하기 위한 예비성형 시간은 5분으로 결정되었다.

Keywords

References

  1. M.A.J. Cropper, S. Geiger and D.M. Jollie, 'Fuel cells: a survey of current developments,' Journal of Power Sources, Vol. 131, 2004, pp. 57-61 https://doi.org/10.1016/j.jpowsour.2003.11.080
  2. P. Zegers, 'Fuel cell commercialization: The key to a hydrogen economy,' Journal of Power Sources, Vol. 154, 2006, pp. 497-502 https://doi.org/10.1016/j.jpowsour.2005.10.051
  3. I. Bar-On, R. Kirchain and R. Roth, 'Technical cost analysis for PEM fuel cells,' Journal of Power Sources, Vol. 109, 2002, pp. 71-75 https://doi.org/10.1016/S0378-7753(02)00062-9
  4. A. Hermann, T. Chaudhuri and P. Spagnol, 'Bipolar plates for PEM fuel cells: A review,' International Journal of Hydrogen Energy, Vol. 30, 2005, pp. 1297-1302 https://doi.org/10.1016/j.ijhydene.2005.04.016
  5. A.L. Dicks, The role of carbon in fuel cells, Journal of Power Sources, Vol. 156, 2006, pp. 128-141 https://doi.org/10.1016/j.jpowsour.2006.02.054
  6. D. N. Busick and M.S. Wilson, 'Low-cost composite materials for PEFC bipolar plates,' Fuel Cells Bulletin, Vol. 2, 1999, pp. 6-8
  7. E.A. Cho, U.-S. Jeon, H.Y. Ha, S.-A. Hong and I.-H. Oh, 'Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells,' Journal of Power Sources, Vol. 125, 2004, pp. 178-182 https://doi.org/10.1016/j.jpowsour.2003.08.039
  8. Richard H. J. Blunk, Daniel J. Lisi, Yeong-Eun Yoo and Charles L. Tucker III, 'Enhanced Conductivity of Fuel Cell Plates through Controlled Fiber Orientation,' AIChE Journal, Vol. 49, No.1, 2003, pp. 18-29 https://doi.org/10.1002/aic.690490104
  9. H.C. Kuan, C.C.M. Ma, K.H. Chen and S.M. Chen, 'Preparation, electrical, mechanical and thermal properties of composite bipolar plate for a fuel cell,' Journal of Power Sources, Vol. 134, 2004, pp. 7-17 https://doi.org/10.1016/j.jpowsour.2004.02.024
  10. S.-H. Kim and H.T. Hahn, 'Size effect in particulate metal matrix composites: an analytical approach,' Advanced composite Materials, Vol. 15, 2006, pp. 175-191 https://doi.org/10.1163/156855106777873888
  11. S.I. Heo, J.C. Yun, K.S. Oh and K.S. Han, 'Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of PEM fuel cells,' Advanced composite Materials, Vol. 15, 2006, pp. 115-126 https://doi.org/10.1163/156855106776829356
  12. 허성일, 윤진철, 오경석, 한경섭, '흑연입자/탄소섬유 혼합 보강 전도성 고분자 복합재료의 전기적, 기계적 특성 연구,' 한국복합재료학회지, Vol. 19, No. 2, 2006, pp. 7-12
  13. A. Heinzel, F. Mahlendorf, O. Niemzig and C. Kreuz, 'Injection moulded low cost bipolar plates for PEM fuel cells,' Journal of Power Sources, Vol. 131, 2004, pp. 35-40 https://doi.org/10.1016/j.jpowsour.2004.01.014
  14. A. Muller, P. Kauranen, A. von Ganski and B. Hell, 'Injection moulding of graphite composite bipolar plates,' Journal of Power Sources, Vol. 154, 2006, pp. 467-471 https://doi.org/10.1016/j.jpowsour.2005.10.096
  15. B.D. Cunningham, J. Huang and D.G. Baird, 'Development of bipolar plates for fuel cells form graphite filled wet-lay material and a thermoplastic laminate skin layer,' Journal of Power Sources, Vol. 165, 2007, pp. 764-773 https://doi.org/10.1016/j.jpowsour.2006.12.035
  16. R. Blunk, M.HA Elhamid, D. Lisi and Y. Mikhail, Polymeric composite bipolar plates for vehicle applications, Journal of Power Sources, Vol. 156, 2006, pp, 151-157 https://doi.org/10.1016/j.jpowsour.2005.04.041
  17. X. Yan, M. Hou, H. Zhang, F. Jing, P. Ming and B. Yi, Performance of PEMFC stack using expanded graphite bipolar plates, Journal of Power Sources, Vol. 160, 2006, pp. 252-257 https://doi.org/10.1016/j.jpowsour.2006.01.022
  18. A Celzard, S. Schneider and J.F. Mareche, 'Densification of expanded graphite,' Carbon, Vol. 40, 2002, pp. 2185-2191 https://doi.org/10.1016/S0008-6223(02)00077-5
  19. J. I. Song, YC, Yang and K. S. Han, 'Squeeze Casting Conditions of Al/ $Al_2O_3$ Metal Matrix Composites with Variations of Preform Drying Process,' Journal of Materials Science, Vol. 31, 1996, pp. 2615-2621 https://doi.org/10.1007/BF00687291