DOI QR코드

DOI QR Code

Effect of Glutathione S-Transferase Polymorphisms on the Antioxidant System

Glutathione S-Transferase 유전적 다형성이 항산화 체계에 미치는 영향

  • 전경임 (경남대학교 식품영양학과) ;
  • 박은주 (경남대학교 식품영양학과)
  • Published : 2007.06.30

Abstract

Glutathione S-transferase genotypes GSTT1, GSTM1 and GSTP1 were characterized in 104 healthy male and female subjects and compared with parameters of oxidative stress at the level of DNA and lipids, with antioxidant enzymes, and with plasma antioxidants in smokers and non.smokers. Of the 104 subjects studied, 57.4% were GSTT1 present and 47.6% were GSTM1 present. The GSTP1 polymorphisms a and b were represented as follows: a/a, 75.5%; a/b, 21.6%; b/b type, 2.9%. The GSTT1 null genotype was associated with decreased glutathione in erythrocytes and elevated lymphocytes DNA damage. GST-Px was higher in GSTT1 null compared with GSTT1 present type. The homozygous GSTP1 genotype was not associated with any antioxidant status or DNA damage. The difference in plasma ${\alpha}$-carotene and erythrocytes GSH-Px and GST activities between smokers and non-smokers was detected in the GSTT1 null genotype. Plasma ${\gamma}$-tocopherol and ${\beta}$-carotene decreased significantly in smokers having GSTM1 null genotype. When GSTT1 and GSTM1 were combined, plasma lycopene and erythrocyte GST were reduced in smokers in both null types of these genes. As for GSTP1 genotype, plasma ${\alpha}$-carotene and erythrocytes GSH-Px decreased significantly in smokers with GSTP1 b/b, while erythrocytes GSH-Px activities decreased in smokers with GSTP1 a/b. The different ${\beta}$-carotene level between smokers and non-smokers was seen with both GSTP1 a/a and a/b genotype. It seems that polymorphisms in the phase II metabolizing enzyme glutathione S-transferase may be important determinants of commonly measured biomarkers.

본 연구에서는 104명의 성인남녀를 대상으로 그들의 GSTT1, GSTM1, GSTP1의 유전적 다형성 분포도를 조사한 결과, 전체 대상자들 중 각각 60명(57.4%), 42명(40.6%)가 GSTT1 과 GSTM1의 유전자를 가지고 있었으며, GSTT1과 GSTM1 유전자가 둘 다를 가진 대상자는 27명(25.7%), 둘 중에 하나만 가지고 있는 사람은 47명(45.5%) 그리고 둘 다 없는 사람은 30명으로 28.7%에 해당되었다. GSTP1 유전자의 경우 homozygous(a/a) wild type은 79명(75.5%)으로 대부분의 대상자가 여기에 해당되었으며, heterozygous(a/b) heterozygous type은 22명(21.6%), 그리고 homozygous(b/b) wild type으로 나타난 대상자는 3명(2.9%)이었다. GSTT1 null type은 산화적 스트레스를 더 많이 받고 있는 것으로 알려진흡연자의 비율이 present 군에 비해 낮음에도 불구하고 적혈구 GSH의 농도는 유의적으로 낮고 임파구 DNA 손상정도는 유의적으로 높은 것으로 나타났다. GSTM1 유전자의 경우 적혈구 GSH-Px의 활성만이 GSTM1 null type이 presenttype에 비해 유의적으로 높은 것으로 나타났으며, 나머지 다른 지표에서는 GSTM1 null type과 present type 간의 유의적인 차이가 없었다. GSTP1 유전자 다형성에 따른 항산화 영양상태의 유의적인 차이는 없었다. 흡연과 GST 유전자 다형성의 상호작용결과, 혈장 ${\alpha}$-carotene 농도, 적혈구 GSH-Px와 GST 활성은 GSTT1 null type의 경우 흡연자에 비해 비흡연자가 유의적으로 높게 나타났으며, GSTT1 present type에서는 흡연자와 비흡연자간의 유의적인 차이가 없는 것으로 나타났다. GSTM1 유전자의 경우 GSTM1의 null type에서 흡연자의 경우 비흡연자에 비해 혈장 ${\gamma}$-tocopherol과 ${\beta}$-carotene 수준이 유의적으로 낮았다. GSTT1과 GSTM1 유전자가 둘 다 없는 경우(both null)에는 흡연자의 혈장 lycopene과 적혈구 GST 활성이 비흡연자에 비해 유의적으로 낮았다. GSTP1 유전자의 경우 혈장 ${\alpha}$-carotene과 적혈구 GSH-Px 활성은 a/a type의 흡연자가 비흡연자에 비해 유의적으로 낮았고, 적혈구 catalase의 활성은 a/b type에서 흡연자가 비흡연자에 비해 유의적으로 낮았으며, ${\beta}$-carotene 농도는 두 type 모두에서 유의적으로 흡연자가 낮았다. 이상의 연구 결과 GST 유전적 다형성에따라 산화, 항산화 관련 효소 활성 및 항산화 영양소 수준의상태가 차이가 있음을 알 수 있었으며, 특히 흡연자의 경우 GST 유전자 type에 따라 항산화 영양상태가 더 큰 영향을 받음을 알 수 있었다. 이러한 연구 결과는 유전적 다형성에따라 항산화 영양소의 권장수준을 책정하는데 기초연구자료로 활용될 수 있을 것이다. 즉, GSTT1 또는 GSTM1 null type의 경우 비흡연자에 비해 흡연자가 항산화 영양소 수준이 더 낮게 나타났으므로 그들의 체내 항산화 영양 상태를 증가시킬 수 있는 여러 방안들, 즉 항산화 비타민의 보충투여 및 야채와 과일의 섭취 권장 등이 고려될 수 있을 것이다. 또한 GST 유전자 다형성에 따라 항산화 영양상태의 차이가 있으므로 항산화 관련 in vitro 실험, 동물 및 인체 실험의 결과 해석 시 나타나는 개인 간의 변이차이는 GST 유전자 다형성으로 일부분 설명될 수 있으리라 기대된다. 향후대상자의 범위를 좀 더 넓혀서 GST 유전자 다형성과 항산화 영양상태의 관계를 규명하고자 하며 더불어 산화물질 해독에 관여하는 다른 유전자(CYP 450, SULT 등)의 역할에 대해서도 계속적인 연구가 필요하다고 사료된다.

Keywords

References

  1. 이홍규. 1997. 한국인의 질병양상의 변화. 한국인의 식생활과 질병. 서울대학교 출판부, 서울. p 30-44
  2. Homepage of Korean national statistic office. http://nso. go.kr (accessed Jan 2007)
  3. Halliwell B. 1996. Antioxidants in human health and disease. Annu Rev Nutr 16: 33-50 https://doi.org/10.1146/annurev.nu.16.070196.000341
  4. Sun Y. 1990. Free radicals, antioxidant enzymes, and carcinogenesis. Free Radical Biol Med 8: 583-599 https://doi.org/10.1016/0891-5849(90)90156-D
  5. Ames BN, Shigenaga MK, Hagen TM. 1993. Oxidants, antioxidants and the degenerative diseases of aging. Proc Natl Acad Sci USA 90: 7915-7922
  6. Fanton JC, Ward PA. 1982. Role of oxygen-derived free radicals and metabolites in leukocytes-dependent inflammatory reactions. Am J Pathol 107: 397-418
  7. Bergsten P, Amitai G, Kehrl J, Levine M. 1990. Ascorbic acid content of human B and T lymphocytes and monocytes. Ann NY Acad Sci 587: 275-277 https://doi.org/10.1111/j.1749-6632.1990.tb00155.x
  8. Frei B, Sticker R, Ames BN. 1988. Anti-oxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci USA 85: 9748-9752
  9. Burton GW, Ingold KU. 1984. $\beta$-Carotene: an unusual type of lipid antioxidant. Science 224: 569-573 https://doi.org/10.1126/science.6710156
  10. Anderson R. 1991. Assessment of the roles of vitamin C, vitamin E, and $\beta$-carotene in the modulation of oxidant stress mediated by cigarette smoke-activated phagocytes. Am J Clin Nutr 53: 358S-361S https://doi.org/10.1093/ajcn/53.1.358S
  11. Santella RM. 1997. DNA damage as an intermediate biomarker in intervention studies. PSEMB 216: 166-171
  12. Poulsen HE, Prieme H, Loft S. 1998. Role of oxidative DNA damage in cancer initiation and promotion. Eur J Cancer Prev 7: 9-16
  13. Bonassi S, Neri M, Puntoni R. 2001. Validation of biomarkers as early predictors of disease. Mutat Res 480-481: 349-358 https://doi.org/10.1016/S0027-5107(01)00194-4
  14. Ostling O, Johanson KJ. 1984. Microgel electrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123: 291-298 https://doi.org/10.1016/0006-291X(84)90411-X
  15. Park E, Kang MH. 2002. Application of the alkaline comet assay for detecting oxidative DNA damage in human biomonitoring. Kor J Nutr 35: 213-222
  16. Collins A, Dusinska M, Franklin M, Somorovska M, Petrovska H, Duthie S, Fillion L, Panayiotidis M, Raslova K, Vaughan N. 1997. Comet assay in human biomonitoring studies: reliability, validation, and applicaions. Environ Mol Mutagen 30: 139-142 https://doi.org/10.1002/(SICI)1098-2280(1997)30:2<139::AID-EM6>3.0.CO;2-I
  17. Ross GM, McMillan TJ, Wilcox P, Collins AR. 1995. The single cell microgel electrophoresis assay (comet assay): technical aspects and applications. Reports on the 5th LH Gray Trust Workshop, Institute of Cancer Research, 1994. Mutat Res 337: 57-60
  18. Betti C, Davini T, Giannessi L, Loprieno N, Barale R. 1994. Microgel electrophoresis assay (comet assay) and SCE analysis in human lymphocytes from 100 normal subjects. Mutat Res 307: 323-333 https://doi.org/10.1016/0027-5107(94)90306-9
  19. Park E, Kang MH. 2004. Smoking and high plasma triglyceride levels as risk factors for oxidative DNA damage in the Korean population. Ann Nutr Met 48: 36-42 https://doi.org/10.1159/000075083
  20. Park YK, Park E, Kim JS, Kang MH. 2003. Daily grape juice consumotion reduces oxidative DNA damage and plasma free radical levels in healthy Koreans. Mutat Res 529: 77-86 https://doi.org/10.1016/S0027-5107(03)00109-X
  21. Rao GV, Kumar GS, Ahuja YR. 1997. Single cell gel electrophoresis on peripheral blood leukocytes of patients with oral squamous cell carcinoma. J Oral Pathol Med 26: 377-380 https://doi.org/10.1111/j.1600-0714.1997.tb00234.x
  22. Hellman B, Friis L, Vaghef H, Edling C. 1999. Alkaline single cell gel electrophoresis and human biomonitoring for genotoxicity: a study on subjects with residential exposure to radon. Mutat Res 442: 121-132 https://doi.org/10.1016/S1383-5718(99)00083-2
  23. Vaghef H, Nygren P, Edling C, Bergh J, Hellman B. 1997. Alkaline single-cell gel electorphoresis and human biomonitoring for genotoxicity: a pilot study on breast cancer patients undergoing chemotherapy including cyclophosphamide. Mutat Res 395: 127-138 https://doi.org/10.1016/S1383-5718(97)00157-5
  24. Baltaci V, Kayikcioglu F, Alpas I, Zeyneloglu H, Haberal A. 2002. Sister chromatid exchange rate and alkaline cometassay scores in patients with ovarian cancer. Gynecol Oncol 84: 62-66 https://doi.org/10.1006/gyno.2001.6450
  25. Wojewodzka M, Kruszewski M, Iwanenko T, Collins AR, Szumiel I. 1999. Lack of adverse effect of smoking habit on DNA strand breakage and base damage, as revealed by the alkaline comet assay. Mutat Res 440: 19-25 https://doi.org/10.1016/S1383-5718(99)00014-5
  26. Nia AB, Van Schooten FJ, Schilderman PA, De Kok TM, Haenen GR, Van Herwijnen MH, Van Agen E, Pachen D, Kleinjans JC. 2001. A multi-biomarker approach to study the effects of smoking on oxidative DNA damage and repair and antioxidative defense mechanisms. Carcinogenesis 22: 395-401 https://doi.org/10.1093/carcin/22.3.395
  27. Moller P, Vogel U, Pedersen A, Dragsted LO, Sandstrom B, Loft S. 2003. No effect of 600 grams fruit and vegetables per day on oxidative DNA damage and repair in healthy nonsmokers. Cancer Epidemiol Biomarkers Prev 12: 1016-1022
  28. Miller MC, Mohrenweiser HW, Bell DA. 2001. Genetic variability in susceptibility and response to toxicants. Toxicol Lett 120: 269-280 https://doi.org/10.1016/S0378-4274(01)00279-X
  29. Lai C, Shields PG. 1999. The role of interindividual variation in human carcinogenesis. J Nutr 129: 552S-555S https://doi.org/10.1093/jn/129.2.552S
  30. Sinha R, Caporaso N. 1999. Diet, genetic susceptibility and human cancer etiology. J Nutr 129: 556S-559S https://doi.org/10.1093/jn/129.2.556S
  31. Garcea G, Sharma RA, Dennison A, Steward WP, Gescher A, Berry DP. 2003. Molecular biomarkers of colorectal carcinogenesis and their role in surveillance and early intervention. Eur J Cancer 39: 1041-1052 https://doi.org/10.1016/S0959-8049(03)00027-3
  32. Gudmundsdottir K, Tryggvadottir L, Eyfjord JE. 2001. GSTM1, GSTT1, and GSTP1 genotypes in relation to breast cancer risk and frequency of mutations in the p53 gene. Cancer Epidemiol Biomarkers Prev 10: 1169-1173
  33. Malats N, Camus-Radon AM, Nyberg F, Ahrens W, Constantinescu V, Mukeria A, Benhamou S, Batura- Gabryel H, Bruske-Hohlfeld I, Simonato L, Menezes A, Lea S, Lang M, Boffetta P. 2000. Lung cancer risk in nonsmokers and GSTM1 and GSTT1 genetic polymorphism. Cancer Epidemiol Biomarkers Prev 9: 827-833
  34. Buch SC, Notani PN, Bhisey RA. 2002. Polymorphism at GSTM1, GSTM3 and GSTT1 gene loci and susceptibility to oral cancer in an Indian population. Carcinogenesis 23: 803-807 https://doi.org/10.1093/carcin/23.5.803
  35. Strange RC, Spiteri MA, Ramachandran S, Fryer AA. 2001. Glutathione-S-transferase family of enzymes. Mutat Res 482: 21-26 https://doi.org/10.1016/S0027-5107(01)00206-8
  36. Strange RC, Jones PW, Fryer AA. 2000. Glutathione S-transferase: genetics and role in toxicology. Toxicol Lett 112-113: 357-363 https://doi.org/10.1016/S0378-4274(99)00230-1
  37. Friedewald WT, Levy RI, Fredrickson DS. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18: 499-502
  38. Pemble S, Schroeder KR, Spencer SR, Meyer DJ, Hallier E, Bolt HM, Ketterer B, Taylor JB. 1994. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 300 (Pt 1): 271-276 https://doi.org/10.1042/bj3000271
  39. Bell DA, Taylor JA, Paulson DF, Robertson CN, Mohler JL, Lucier GW. 1993. Genetic risk and carcinogen exposure: a common inherited defect of the carcinogen-metabolism gene glutathione S-transferase M1 (GSTM1) that increases susceptibility to bladder cancer. J Natl Cancer Inst 85: 1159-1164 https://doi.org/10.1093/jnci/85.14.1159
  40. Harries LW, Stubbins MJ, Forman D, Howard GC, Wolf CR. 1997. Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 18: 641-644 https://doi.org/10.1093/carcin/18.4.641
  41. Beutler E. 1984. Glutatione peroxidase. In Red cell metabolism: A mannual for biochemical methods. Verlag Grune and Straton, New York. p 71-73
  42. Aebi H. 1974. Catalase. In Methods of enzymatic analysis. Bergmeyer HU, ed. Verlag Chemie, Weinheim. p 673-678
  43. Habig WH, Pabst MJ, Jakoby WB. 1974. Glutathione S- transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249: 7130-7139
  44. Genser D, Kang MH, Vogelsang H, Elmadfa I. 1999. Status of lipid-soluble antioxidants and TRAP in patients with Crohn's disease and healthy controls. Eur J Clin Nutr 53: 675-679 https://doi.org/10.1038/sj.ejcn.1600764
  45. Rice-Evance C, Miller NJ. 1994. Total antioxidant status in plasma and body fluids. Methods in Enzymology 234: 279-293 https://doi.org/10.1016/0076-6879(94)34095-1
  46. Ahotupa M, Vasankari TJ. 1999. Baseline diene conjugation in LDL lipids: An indicator of circulating oxidized LDL. Free Radic Biol Med 27: 1141-1150 https://doi.org/10.1016/S0891-5849(99)00201-4
  47. Ahotupa M, Ruutu M, Mantyla E. 1996. Simple methods of quantifying oxidation products and antioxidant potential of low density lipoproteins. Clin Biochem 29: 139-144 https://doi.org/10.1016/0009-9120(95)02043-8
  48. Kim WJ, Kim H, Kim CH, Lee MS, Oh BR, Lee MH, Katoh T. 2002. GSTT1-null genotype is a protective factor against bladder cancer. Urology 60: 913-918 https://doi.org/10.1016/S0090-4295(02)01892-7
  49. Kim MH, Kim YS, Lee SR, Shim SS, Hur SE, Lee WJ, Moon HS, Ahn JJ, Chung HW. 2003. Relationship between genetic polymorphisms of the glutathione S-transferase and endometriosis susceptibility in Korean populations. Kor J Gynecol 46: 2403-2409
  50. Dusinska M, Ficek A, Horska A, Raslova K, Petrovska H, Vallova B, Drlickova M, Wood SG, Stupakova A, Gasparovic J, Bobek P, Nagyova A, Kovacikova Z, Blazicek P, Liegebel U, Collins AR. 2001. Glutathione S-transferase polymorphisms influence the level of oxidative DNA damage and antioxidant protection in humans. Mutat Res 482: 47-55 https://doi.org/10.1016/S0027-5107(01)00209-3
  51. Hong YC, Lee KH, Yi CH, Ha EH, Christiani DC. 2002. Genetic susceptibility of term pregnant women to oxidative damage. Toxicol Lett 129: 255-262 https://doi.org/10.1016/S0378-4274(02)00014-0
  52. Ozguner F, Koyu A, Cesur G. 2005. Active smoking causes oxidative stress and decreases blood melatonin levels. Toxicol Ind Health 21: 21-26 https://doi.org/10.1191/0748233705th211oa
  53. Kocyigit A, Erel O, Gur S. 2001. Effects of tobacco smoking on plasma selenium, zinc, copper and iron concentrations and related antioxidative enzyme activities. Clin Biochem 34: 629-633 https://doi.org/10.1016/S0009-9120(01)00271-5
  54. Durak I, Yalcin S, Burak Cimen MY, Buyukkocak S, Kacmaz M, Ozturk HS. 1999. Effects of smoking on plasma and erythrocyte antioxidant defense systems. J Toxicol Environ Health A 56: 373-378 https://doi.org/10.1080/009841099157962
  55. Chow CK. 1993. Cigarette smoking and oxidative damage in the lung. Ann N Y Acad Sci 686: 289-298 https://doi.org/10.1111/j.1749-6632.1993.tb39189.x
  56. Ozturk O, Isbir T, Yaylim I, Kocaturk CI, Gurses A. 2003. GST M1 and CYP1A1 gene polymorphism and daily fruit consumption in Turkish patients with non-small cell lung carcinomas. In Vivo 17: 625-632
  57. Olshan AF, Li R, Pankow JS, Bray M, Tyroler HA, Chambless LE, Boerwinkle E, Pittman GS, Bell DA. 2003. Risk of atherosclerosis: interaction of smoking and glutathione S-transferase genes. Epidemiology 14: 321-327 https://doi.org/10.1097/00001648-200305000-00012

Cited by

  1. Antioxidative Status, DNA Damage and Lipid Profiles in Korean Young Adults by Glutathione S-Transferase Polymorphisms vol.44, pp.1, 2011, https://doi.org/10.4163/kjn.2011.44.1.16
  2. Lymphocyte DNA Damage and Anti-Oxidative Parameters are Affected by the Glutathione S-Transferase (GST) M1 and T1 Polymorphism and Smoking Status in Korean Young Adults vol.44, pp.5, 2011, https://doi.org/10.4163/kjn.2011.44.5.366
  3. Lymphocyte DNA damage and plasma antioxidant status in Korean subclinical hypertensive patients by glutathione S-transferase polymorphism vol.11, pp.3, 2017, https://doi.org/10.4162/nrp.2017.11.3.214