Aniline 분해균주 Burkholderia sp. HY1과 Delftia sp. HY99에서 유래된 Aniline Dioxygenases 유전자의 비교 분석

Comparative Analysis of Aniline Dioxygenase Genes from Aniline Degrading Bacteria, Burkholderia sp. HY1 and Delftia sp. HY99.

  • 강형일 (순천대학교 환경교육과) ;
  • 오계헌 (순천향대학교 생명과학부)
  • Kahng, Hyung-Yeel (Department of Environmental Education, Sunchon National University) ;
  • Oh, Kye-Heon (Department of Life Science, Soonchunhyang University)
  • 발행 : 2007.06.28

초록

본 연구에서는 단일 탄소원과 질소원으로 aniline을 이용하는 것으로 보고된 바 있는 Bukholderia sp. HY1과 Deiftia sp. HY99로부터 aniline의 첫 번째 분해 단계에 관련된 aniline dioxygenas의 위치를 확인하고 그 유전자를 클로닝하여 아미노산 서열을 결정하고 비교하였다. 한 개 이상의 플라스미드 DNA를 포함하고 있을 것으로 조사된 B.a sp. HY1에서 유래된 플라스미드의 curing 실험을 통해, B. sp. HY1의 aniline oxygenase는 플라스미드가 아닌 염색체 DNA에 존재하는 것으로 확인되었다. B. sp. HY1과 D. sp. HY99에서 유래된 aniline dioxygenase small subunit는 146개 아미노산을 기준으로 약 79%의 상동성을 보였다. 특히, B. sp. HY1으로부터 얻어진 ado2는 aniline dioxygenase small subunit의 terminal dioxygenase에 속하는 것으로 Frateuria sp. ANA-18의 tdnA2와 99%, 그리고 Delftia sp. HY99의 ado2는 Delftia sp. AN3의 danA2와 99% 이상의 아미노산 상동성을 나타내었다. 또한 본 연구에서 두 균주에서 얻어진 catechol oxygenase의 아미노산 서열분석을 통해 B. sp. HY1은 catechol 1,2-dioxygenase에 의해 ortho pathway를 D. sp. HY99는 catechol 2,3-dioxygenase에 의해 meta pathway를 운영할 것이라는 이전 보고를 강력하게 뒷받침해 주었다.

In this study, aniline dioxygenase genes responsible for initial catabolism of aniline in Burkholderia sp. HY1 and Delftia sp. HY99 were cloned and the amino acid sequences were comparatively analyzed, which already have been reported as bacteria utilizing aniline as a sole source of carbon and nitrogen, B. sp. HY1 was found to have at least a plasmid, and the plasmld-cured strain, B. sp. HY1-PC obtained using mitomycin C was tested with wild type strain to investigate whether the former maintained the degradability for aniline. This proved that the aniline oxygenase gene from B. sp. HY1 was located in chromosomal DNA, not in plasmid DNA. Aniline dioxygenase small subunits from B. sp. HY1 and D. sp. HY99 were found, based on 146 amino acids, to share 79% similarity. Notably, ado2 genes from B. sp. HY1 and D. sp. HY99 which were found to be terminal dioxygenase of aniline dioxygenase small subunit showed 99% similarity in the deduced amino acid sequences with tdnA2 of Frateuria sp. ANA-18 and danA2 of D. sp. AN3, respectively. Besides, enzyme assay and amino acid sequence analysis of catechol dioxygenase supported the previous report that B. sp. HY1 might occupy ortho-cleavage pathway using catechol 1,2-dioxygenase, while D. sp. HY99 might occupy catechol 2,3-dioxygenase for meta-cleavage pathway.

키워드

참고문헌

  1. 김현주, 김성은, 김정건, 김진철, 최경자, 김흥태, 황인규, 김홍기, 조광연, 이선우. 2003. Delftia acidovorans로부터 aniline분해관련 유전자의 분리. 한국미생물생명공학회지 31:25-31
  2. Aoki, K., K. Ohtsuka, and R. Shinke. 1984. Rapid biodegradation of aniline by Frateuria species ANA-18 and its aniline metabolism, Agric. Biol. Chem. 48: 865-872 https://doi.org/10.1271/bbb1961.48.865
  3. Aoki, K., Y. Nakanishi, S. Murakami, and R. Shinke. 1990. Microbial metabolism of aniline through a meta-cleavage pathway: Isolation of strains and production of catechol 2,3-dioxygenase, Agric. Biol. Chem. 54: 205-206 https://doi.org/10.1271/bbb1961.54.205
  4. Fukumori, F., and C. P. Saint. 1997. Nucleotide sequence and regulational analysis genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22 (pTDN1), J. Bacteriol. 170: 399-408
  5. Fujii, T., T. Masahiro, and M. Yoshimichi. 1997. Plasmid-encoded genes specifying aniline oxidation from Acinetobacter sp. strain YAA. Microbiology 143: 93-99 https://doi.org/10.1099/00221287-143-1-93
  6. Itoh, N., M. Naoki, and K. Tokyo. 1993. Oxidation of aniline to nitrobenzene by noneheme bromoperoxidase. Biochem. Mol. Biol. Intl. 29: 785-791
  7. Kahng, H.-Y., J. J. Kukor, and K.-H. Oh. 2000. Characterization of strain HY99, a novel microorganism capable of aerobic and anaerobic degradation of aniline. FEMS Microbiol. Lett. 190: 215-221 https://doi.org/10.1111/j.1574-6968.2000.tb09289.x
  8. Kahng, H.-Y., J. J. Kukor, and K.-H. Oh. 2000. Physiological and phylogenetic analysis of Burkholderia sp. HY1 capable of aniline degradation. J. Microbiol. Biotechnol. 10: 643-650
  9. Kahng, H.-Y., S.-I. Kim, M.-J. Woo, Y.-K. Park, and Y.-N. Lee. 1992. Isolation and characterization of aniline-degrading bacteria. K. J. Microbiol. 30: 199-206
  10. Kearney, P. C., J. R. Plimmer, and F. B. Guarida. 1969. Mixed chlorobenzene formation in soil. J. Agric. Food Chem. 17: 1418-1419 https://doi.org/10.1021/jf60166a052
  11. Kim, S.-I., J. J. Kukor, K.-H. Oh, and H.-Y. Kahng. 2006. Evaluating the genetic diversity of dioxygenases for initial catabolism of aromatic hydrocarbons in Pseudomonas rhodesiae KK1. Enzyme Microbial. Technol. 40: 71-78 https://doi.org/10.1016/j.enzmictec.2005.10.041
  12. Lederberg, J., and E. M. Lederberg. 1952. Replica plating and indirect selection of bacterial mutants. J. Bacteriol. 3: 399
  13. Liang, Q., M. Takaeo, M. Chen, W. Chang, Y. Xu, and M. Lin. 2005. Chromosome-encoded gene cluster for the metabolic pathway that converts aniline to TCA-cycle intermediates in Delftia tsuruhatensis AD9. Microbiology 151: 3435-3446 https://doi.org/10.1099/mic.0.28137-0
  14. Liu, Z., H. Yang, Z. Huang, P. Zhou, and S. J. Liu. 2002. Degradation of aniline by newly isolated, extremely aniline-tolerant Delftia sp. AN3, Appl. Microbiol. Biotechnol. 58: 679-682 https://doi.org/10.1007/s00253-002-0933-8
  15. Lyons, C. D., S. Katz, and R. Bartha (1984), Mechanisms and pathways of aniline elimination from aquatic environments, Appl. Environ. Microbiol. 48: 491-496
  16. Mattes T. E., N. V. Coleman, J. C. Spain, and J. M. Gossett. 2005. Physiological and molecular genetic analyses of vinyl chloride and ethene biodegradation in Nocardioides sp. strain JS614. Arch. Microbiol. 183: 95-106 https://doi.org/10.1007/s00203-004-0749-2
  17. Minard, R. D, S. Russel, and J. M. Bollag. 1977. Chemical transformation of 4-chloroaniline to a trizene in a bacterial culture medium, J. Agric. Food. Chem. 25: 841-844 https://doi.org/10.1021/jf60212a011
  18. Murakami, S., T. Hayashi, T. Maeda, S. Takaenaka, and K. Aoki. 2003. Cloning and functional analysis of aniline dioxygenase gene cluster, from Frateuria species ANA-18, that metabolizes aniline via an ortho-cleavage pathway of catechol. Biosci. Biotechnol. Biochem. 67: 2351-2358 https://doi.org/10.1271/bbb.67.2351
  19. Nozaki, M. 1970. Metapyrocatechase (Pseudomonas). Methods Enzymol. 17: 522-555 https://doi.org/10.1016/0076-6879(71)17235-7
  20. Patel, R. N., C. T. Hou, A. Felix, and M. O. Lillard. 1976. Catechol 1,2-dioxygenase from Acinetobacter calcoaceticus: purification and properties, J. Bacteriol. 127: 536-544
  21. Rheinwald, J. G, A. M. Chakrabarty, and I. C. Gunsalus. 1973. A transmissible plasmid controlling camphor oxidation in Pseudomonas Putida. Proc. Natl. Acad. Sci. 70: 885-889
  22. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning, 2nd ed. Cold Spring Harbor, New York, USA
  23. Urata, M., E. Uchida, H. Nojiri, T. Omori, R. Obo, N. Miyaura, and N. Ouchiyama. 2004. Genes involved in aniline degradation by Delftia acidovorans strain 7N and its distribution in the natural environment. Biosci. Biotechnol. Biochem. 68: 2457-2465 https://doi.org/10.1271/bbb.68.2457